• Title/Summary/Keyword: 한국어 언어 모델

Search Result 1,039, Processing Time 0.025 seconds

English/korean Terminology Translation System Using Word Formation (조어법 정보를 이용한 전문용어의 영/한 번역 시스템 개발)

  • 서충원;배선미;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.937-939
    • /
    • 2004
  • 전문용어 조어법 분석은 기존의 전문용어들의 어휘의 구성과 구조를 파악하여 전문용어 생성의 원리를 밝혀 여러 응용시스템에 이용하기 위한 기초 작업에다. 조어법 정보를 이용한 전문용어 번역 시스템은 조어법 분석 결과의 조어단위 정렬과 색인을 통하여, 새로운 영어 용어에 대한 한국어 대역이 후보 집합을 생성한다. 생성된 후보들은 언어 모델의 정보량의 차이를 이용한 가중치에 의하여 순서화된다. 본 논문에서 제안하는 가중치 방법을 이용하여 조어법 분석 결과에 포함되지 않은 용어들을 대상으로 성능을 평가했을 때, 영-한 조어단위 번역의 n-best 정확률에서 1순위 정확률은 약 61%, 10순위 정확률은 97%의 성능을 보였다.

  • PDF

Document Classification Methodology Using Autoencoder-based Keywords Embedding

  • Seobin Yoon;Namgyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.35-46
    • /
    • 2023
  • In this study, we propose a Dual Approach methodology to enhance the accuracy of document classifiers by utilizing both contextual and keyword information. Firstly, contextual information is extracted using Google's BERT, a pre-trained language model known for its outstanding performance in various natural language understanding tasks. Specifically, we employ KoBERT, a pre-trained model on the Korean corpus, to extract contextual information in the form of the CLS token. Secondly, keyword information is generated for each document by encoding the set of keywords into a single vector using an Autoencoder. We applied the proposed approach to 40,130 documents related to healthcare and medicine from the National R&D Projects database of the National Science and Technology Information Service (NTIS). The experimental results demonstrate that the proposed methodology outperforms existing methods that rely solely on document or word information in terms of accuracy for document classification.

Competitor Extraction based on Machine Learning Methods (기계학습 기반 경쟁자 자동추출 방법)

  • Lee, Chung-Hee;Kim, Hyun-Jin;Ryu, Pum-Mo;Kim, Hyun-Ki;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.107-112
    • /
    • 2012
  • 본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.

  • PDF

Unsupervised Abstractive Summarization Method that Suitable for Documents with Flows (흐름이 있는 문서에 적합한 비지도학습 추상 요약 방법)

  • Lee, Hoon-suk;An, Soon-hong;Kim, Seung-hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.501-512
    • /
    • 2021
  • Recently, a breakthrough has been made in the NLP area by Transformer techniques based on encoder-decoder. However, this only can be used in mainstream languages where millions of dataset are well-equipped, such as English and Chinese, and there is a limitation that it cannot be used in non-mainstream languages where dataset are not established. In addition, there is a deflection problem that focuses on the beginning of the document in mechanical summarization. Therefore, these methods are not suitable for documents with flows such as fairy tales and novels. In this paper, we propose a hybrid summarization method that does not require a dataset and improves the deflection problem using GAN with two adaptive discriminators. We evaluate our model on the CNN/Daily Mail dataset to verify an objective validity. Also, we proved that the model has valid performance in Korean, one of the non-mainstream languages.

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

A Model of Natural Language Information Retrieval Using Main Keywords and Sub-keywords (주 키워드와 부 키워드를 이용한 자연언어 정보 검색 모델)

  • Kang, Hyun-Kyu;Park, Se-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3052-3062
    • /
    • 1997
  • An Information Retrieval (IR) is to retrieve relevant information that satisfies user's information needs. However a major role of IR systems is not just the generation of sets of relevant documents, but to help determine which documents are most likely to be relevant to the given requirements. Various attempts have been made in the recent past to use syntactic analysis methods for the generation of complex construction that are essential for content identification in various automatic text analysis systems. Unfortunately, it is known that methods based on syntactic understanding alone are not sufficiently powerful to Produce complete analyses of arbitrary text samples. In this paper, we present a document ranking method based on two-level ranking. The first level is used to retrieve the documents, and the second level to reorder the retrieved documents. The main keywords used in the first level can be defined as nouns and/or compound nouns that possess good document discrimination powers. The sub-keywords used in the second level can be also defined as adjectives, adverbs, and/or verbs that are not main keywords, and function words. An empirical study was conducted from a Korean encyclopedia with 23,113 entries and 161 Korean natural language queries collected by end users. 850% of the natural language queries contained sub-keywords. The two-level document ranking methods provides significant improvement in retrieval effectiveness over traditional ranking methods.

  • PDF

News Data Analysis Using Acoustic Model Output of Continuous Speech Recognition (연속음성인식의 음향모델 출력을 이용한 뉴스 데이터 분석)

  • Lee, Kyong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, the acoustic model output of CSR(Continuous Speech Recognition) was used to analyze news data News database used in this experiment was consisted of 2,093 articles. Due to the low efficiency of language model, conventional Korean CSR is not appropriate to the analysis of news data. This problem could be handled successfully by introducing post-processing work of recognition result of acoustic model. The acoustic model more robust than language model in Korean environment. The result of post-processing work was made into KIF(Keyword information file). When threshold of acoustic model's output level was 100, 86.9% of whole target morpheme was included in post-processing result. At the same condition, applying length information based normalization, 81.25% of whole target morpheme was recognized. The purpose of normalization was to compensate long-length morpheme. According to experiment result, 75.13% of whole target morpheme was recognized KIF(314MB) had been produced from original news data(5,040MB). The decrease rate of absolute information met was approximately 93.8%.

  • PDF

Efficient Semantic Structure Analysis of Korean Dialogue Sentences using an Active Learning Method (능동학습법을 이용한 한국어 대화체 문장의 효율적 의미 구조 분석)

  • Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.306-312
    • /
    • 2008
  • In a goal-oriented dialogue, speaker's intention can be approximated by a semantic structure that consists of a pair of a speech act and a concept sequence. Therefore, it is very important to correctly identify the semantic structure of an utterance for implementing an intelligent dialogue system. In this paper, we propose a model to efficiently analyze the semantic structures based on an active teaming method. To reduce the burdens of high-level linguistic analysis, the proposed model only uses morphological features and previous semantic structures as input features. To improve the precisions of semantic structure analysis, the proposed model adopts CRFs(Conditional Random Fields), which show high performances in natural language processing, as an underlying statistical model. In the experiments in a schedule arrangement domain, we found that the proposed model shows similar performances(92.4% in speech act analysis and 89.8% in concept sequence analysis) to the previous models although it uses about a third of training data.

Part-Of-Speech Tagging using multiple sources of statistical data (이종의 통계정보를 이용한 품사 부착 기법)

  • Cho, Seh-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.501-506
    • /
    • 2008
  • Statistical POS tagging is prone to error, because of the inherent limitations of statistical data, especially single source of data. Therefore it is widely agreed that the possibility of further enhancement lies in exploiting various knowledge sources. However these data sources are bound to be inconsistent to each other. This paper shows the possibility of using maximum entropy model to Korean language POS tagging. We use as the knowledge sources n-gram data and trigger pair data. We show how perplexity measure varies when two knowledge sources are combined using maximum entropy method. The experiment used a trigram model which produced 94.9% accuracy using Hidden Markov Model, and showed increase to 95.6% when combined with trigger pair data using Maximum Entropy method. This clearly shows possibility of further enhancement when various knowledge sources are developed and combined using ME method.

End-to-end speech recognition models using limited training data (제한된 학습 데이터를 사용하는 End-to-End 음성 인식 모델)

  • Kim, June-Woo;Jung, Ho-Young
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • Speech recognition is one of the areas actively commercialized using deep learning and machine learning techniques. However, the majority of speech recognition systems on the market are developed on data with limited diversity of speakers and tend to perform well on typical adult speakers only. This is because most of the speech recognition models are generally learned using a speech database obtained from adult males and females. This tends to cause problems in recognizing the speech of the elderly, children and people with dialects well. To solve these problems, it may be necessary to retain big database or to collect a data for applying a speaker adaptation. However, this paper proposes that a new end-to-end speech recognition method consists of an acoustic augmented recurrent encoder and a transformer decoder with linguistic prediction. The proposed method can bring about the reliable performance of acoustic and language models in limited data conditions. The proposed method was evaluated to recognize Korean elderly and children speech with limited amount of training data and showed the better performance compared of a conventional method.