• Title/Summary/Keyword: 한국어 어절

Search Result 364, Processing Time 0.024 seconds

Comparing Byte Pair Encoding Methods for Korean (음절 단위 및 자모 단위의 Byte Pair Encoding 비교 연구)

  • Lee, Chanhee;Lee, Dongyub;Hur, YunA;Yang, Kisu;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.291-295
    • /
    • 2018
  • 한국어는 교착어적 특성이 강한 언어로, 교착어적 특성이 없는 영어 등의 언어와 달리 형태소의 수에 따라 조합 가능한 어절의 수가 매우 많으므로 어절 단위의 처리가 매우 어렵다. 따라서 어절을 더 작은 단위로 분해하는 전처리 단계가 요구되는데, 형태소 분석이 이를 위해 주로 사용되었다. 하지만 지도학습 방법을 이용한 형태소 분석 시스템은 다량의 학습 데이터가 요구되고, 비지도학습 방법을 이용한 형태소 분석은 성능에 큰 하락을 보인다. Byte Pair Encoding은 데이터를 압축하는 알고리즘으로, 이를 자연어처리 분야에 응용하면 비지도학습 방법으로 어절을 더 작은 단위로 분해할 수 있다. 본 연구에서는 한국어에 Byte Pair Encoding을 적용하는 두 가지 방법인 음절 단위 처리와 자모 단위 처리의 성능 및 특성을 정량적, 정성적으로 분석하는 방법을 제안하였다. 또한, 이 방법을 세종 말뭉치에 적용하여 각각의 알고리즘을 이용한 어절 분해를 실험하고, 그 결과를 어절 분해 정확도, 편향, 편차를 바탕으로 비교, 분석하였다.

  • PDF

Cloning of Korean Morphological Analyzers using Pre-analyzed Eojeol Dictionary and Syllable-based Probabilistic Model (기분석 어절 사전과 음절 단위의 확률 모델을 이용한 한국어 형태소 분석기 복제)

  • Shim, Kwangseob
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2016
  • In this study, we verified the feasibility of a Korean morphological analyzer that uses a pre-analyzed Eojeol dictionary and syllable-based probabilistic model. For the verification, MACH and KLT2000, Korean morphological analyzers, were cloned with a pre-analyzed eojeol dictionary and syllable-based probabilistic model. The analysis results were compared between the cloned morphological analyzer, MACH, and KLT2000. The 10 million Eojeol Sejong corpus was segmented into 10 sets for cross-validation. The 10-fold cross-validated precision and recall for cloned MACH and KLT2000 were 97.16%, 98.31% and 96.80%, 99.03%, respectively. Analysis speed of a cloned MACH was 308,000 Eojeols per second, and the speed of a cloned KLT2000 was 436,000 Eojeols per second. The experimental results indicated that a Korean morphological analyzer that uses a pre-analyzed eojeol dictionary and syllable-based probabilistic model could be used in practical applications.

Analysis of Derived Nouns and Compound Nouns by Examining Full Text (전문(全文) 분석을 통한 파생명사 및 합성명사의 분석)

  • Park, Bong-Rae;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.122-128
    • /
    • 1997
  • 대부분의 한국어 형태소 분석기는 파생명사나 합성명사가 포함된 어절을 오분석 또는 과분석하는 경향이 있다. 이는 하나의 어절에서 오분석이나 과분석을 방지하기 위하여 획득할 수 있는 정보가 제한적이기 때문이다. 이에 본 논문은 파생명사나 합성명사 후보가 포함된 어절뿐만 아니라 주변 및 전문에서 분석에 필요한 정보를 수집하여 이용하는 방법을 제시한다. 제안한 방법은 오분석된 파생명사나 합성명사에만 나타나는 저빈도 단어를 제거하고, 파생명사나 합성명사 후보의 주변 어휘들을 실마리로 이용하며, 문서 전역에서 동일한 파생명사나 합성명사 후보가 포함된 둘 이상의 어절을 비교분석하여 파생명사 및 합성명사 후보가 포함된 어절을 처리한다. 실험 결과 제안한 방법은 99.8%의 정확도와 95.3%의 재현율로 파생명사나 합성명사 후보가 포함된 어절을 올바르게 분석할 수 있었다.

  • PDF

Development of POS Tagging System Independent to Word Spacing (띄어쓰기 비종속 품사 태깅 시스템 개발)

  • Lee, Kyung-Il;Ahn, Tae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.69-72
    • /
    • 2003
  • 본 논문에서는 입력된 한국어 문자열로부터 형태소를 분석하고, 품사를 태깅하는 방법에 있어 개선된 통계적 모델을 제안하고, 이에 기반한 띄어쓰기 비종속 형태소 분석 및 태깅 시스템의 개발과 성능 평가에 대한 결과를 소개하고 있다. 제안된 통계 기반품사 태깅 시스템은 입력된 문자열로부터 음절의 띄어쓰기 확률값을 계산하여 유사어절을 생성하고, 유사어절 단위로 사용자 띄어쓰기와 상관없이 형태소 후보 리스트를 생성하며, 인접한 후보 형태소들의 접속 확률 계산에 있어 어절 간 접속 확률과 어절 내 접속 확률을 모두 사용함으로, 최적의 형태소 리스트를 결정하는 모델을 사용하고 있다. 특히, 형태소들의 접속 확률 계산 시 어절 간 접속 확률과 어절 내 접속 확률의 결합 비율이 음절의 띄어쓰기 확률 값과 사용자의 띄어쓰기 여부에 따라 자동으로 조절되는 특징을 가지고 있으며, 이를 통해 극단적으로 띄어 쓰거나 붙여 쓴 문장에 대해서도 평균 90%수준의 품사 태깅 성능을 달성할 수 있었다.

  • PDF

Effects of Spacing Words on Reading Adnominal Eojeol (띄어쓰기가 관형어절 이해에 미치는 영향)

  • Kim, Jihye;Nam, Kichun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • 띄어쓰기는 한글 맞춤법에 명시되어 있는 규정에 따르면 되지만, 근본적으로 명확한 정의가 내려있지 않으며 복잡하고 애매모호한 기준들이 얽혀 사용자들이 혼란을 겪는 등 많은 오류를 일으키고 있다. 이에 맞춤법 오류에 대한 원인을 찾아 체계적인 교육이 이루어지거나, 맞춤법을 수정 및 보완할 필요성이 있다 하겠다. 본 연구는 사용자들의 편의성을 우선시하여 맞춤법에 있어 논리적 근거를 마련하고 한국어 정보처리의 양상을 살펴보는 것에 의의가 있다. 이에 비교적 띄어쓰기 기준이 명확한 관형어절에 초점을 두어 띄어쓰기가 읽기에 어떤 영향을 미치는지 알아보고자 실시하였다. '관형사 + 명사' 구조와 '~적 + 명사' 구조의 관형어절이 포함된 104개의 문장을 가지고 2개의 목록을 만들었다. 목록 간에는 띄어쓰기 여부가 반대이며 피험자는 목록 중 하나를 경험하였다. 하나의 문장을 끊어서 제시하여 피험자는 읽는 데로 space bar key를 누르는 자기 읽기 조절 과제를 시행하였고, 이어서 문장에 대한 질문을 통해 이해도 검사를 실시하였다. 관형어절을 읽는 평균 속도를 분석한 결과 미세한 차이가 있었으나, 유의미하지는 않았다. 이는 관형어절에 있어서 띄어쓰기의 영향이 크지 않음을 의미한다고 볼 수 있겠다.

  • PDF

Korean Word Spacing System Using Syllable N-Gram and Word Statistic Information (음절 N-Gram과 어절 통계 정보를 이용한 한국어 띄어쓰기 시스템)

  • Choi, Sung-Ja;Kang, Mi-Young;Heo, Hee-Keun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.47-53
    • /
    • 2003
  • 본 논문은 정제된 대용량 말뭉치로부터 얻은 음절 n-gram과 어절 통계를 이용한 한국어 자동 띄어쓰기 시스템을 제안한다. 한 문장 내에서 최적의 띄어쓰기 위치는 Viterbi 알고리즘에 의해 결정된다. 통계 기반 연구에 고유한 문제인 데이터 부족 문제, 학습 말뭉치 의존 문제를 개선하기 위하여 말뭉치를 확장하고 실험을 통해 얻은 매개변수를 사용하고 최장 일치 Viable Prefix를 찾아 어절 목록에 추가한다. 본 연구에 사용된 학습 말뭉치는 33,641,511어절로 구성되어 있으며 구어와 문어를 두루 포함한다.

  • PDF

Improvement of Analysis Speed in Korean Morphological-Analyzer Using Ameliorated Dictionary (사전 성능개선을 통한 한국어 형태소분석기의 분석속도 향상)

  • Kim, Young-Kwan;Park, Min-Sik;Choe, Jin-Suk;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.479-483
    • /
    • 1999
  • 본 논문에서는 사전 구조와 탐색알고리즘을 개선하여 형태소분석기의 분석 속도를 향상시켰다. 형태소분석기의 분석시간은 사전탐색과 제약검사의 비중이 크다. 따라서 형태소분석기의 처리속도는 사전 탐색 기법에 많은 영향을 받는다. 본 논문에서는 한국어 형태소분석기에서 사용되는 사전의 탐색속도 향상과 한 문서에 나타나는 동일한 어절에 대해서 cache를 사용하여 형태소분석기의 처리 속도를 빠르게 하였다. 또한 기존의 형태소분석기에서 속도 증가를 위해 사용하는 어절-형태소분석결과 사전을 활용하여 더 발전시켰다. 본 논문에서는 어절-형태소분석결과 사전을 사용할 때, 분석 속도향상을 위한 새로운 가속기법인 '하이브리드(HyBrid)'방법을 사용하여 어절-형태소분석결과 사전의 적중률을 높였다.

  • PDF

Improving Word Spacing Correction Methods for Efficient Text Processing (효율적인 문서처리를 위한 띄어쓰기 교정 기법 개선)

  • 강미영;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.486-488
    • /
    • 2003
  • 한국어 문서에서 가장 많이 나타나는 띄어쓰기 오류는 의미적이고 통사적인 중의성이나 오류를 야기한다. 이 논문은 부산대 인공지능 연구실에서 개발한 부분 문장 분석을 기반으로 하는 한국어 걸자 및 운법 검사기(2.2)에 구현되어 있는 어절 내 한 번 띄어쓰기 오류 교정 기법 및 어절 간 띄어쓰기 오류 교점 기법을 확장하고 개선하며 어절 내 여러 번 띄어쓰기 기법을 개발함을 목표로 한다.

  • PDF

Korean Part-of-Speech Tagging using Constrained-Rule and Main POS Information among Words (어절간 주품사 정보와 제약 규칙을 이용한 한국어 품사 태깅 시스템)

  • Kang, Yu-Hwan;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.433-437
    • /
    • 1999
  • 본 논문에서는 품사 태깅을 위한 방법으로 어절간 품사 패턴 정보를 이용하는 방법을 제안한다. 품사 태깅을 위하여 여러 어절들 간의 품사 패턴 정보를 통계 정보로 구축하고 품사 태깅시에 품사 패턴 정보를 이용하여 품사 태깅을 수행한다. 이때 품사 패턴 적용시 몇가지 제약 규칙을 둠으로써 품사 태깅의 정확률을 높이는 방법을 연구하였다.

  • PDF

Korean Part-of-Speech Tagging System Using Resolution Rules for Individual Ambiguous Word (어절별 중의성 해소 규칙을 이용한 혼합형 한국어 품사 태깅 시스템)

  • Park, Hee-Geun;Ahn, Young-Min;Seo, Young-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.427-431
    • /
    • 2007
  • In this paper we describe a Korean part-of-speech tagging approach using resolution rules for individual ambiguous word and statistical information. Our tagging approach resolves lexical ambiguities by common rules, rules for individual ambiguous word, and statistical approach. Common rules are ones for idioms and phrases of common use including phrases composed of main and auxiliary verbs. We built resolution rules for each word which has several distinct morphological analysis results to enhance tagging accuracy. Each rule may have morphemes, morphological tags, and/or word senses of not only an ambiguous word itself but also words around it. Statistical approach based on HMM is then applied for ambiguous words which are not resolved by rules. Experiment shows that the part-of-speech tagging approach has high accuracy and broad coverage.