• Title/Summary/Keyword: 한국어 부분 구문분석기

Search Result 16, Processing Time 0.02 seconds

Chunking Using Automatic Constructed Syntactic Pattern Dictionary and Rule (자동 구축된 구문패턴사전과 규칙을 이용한 구묶음)

  • Im, Ji-Hui;Choe, Ho-Seop;Lee, Jung-Chul;Ock, Cheul-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.35-39
    • /
    • 2004
  • 본 논문은 실용적인 구문분석기의 전단계로서, 자동 구축된 구문패턴사전과 규칙을 이용하여 구묶음하는 방법을 제안한다. 우선 규칙은 구문분석 말뭉치(30,875어절)를 대상으로 자동 추출된 고빈도의 규칙(Rewriting Rule)을 본 논문에 맞게 수동으로 구축하였다. 규칙은 조건부, 행위부로 이루어진 이진 규칙(binary rule)의 형태를 이루며, 명사구(NP), 수식어구(AP, DP), 인용구(X), 용언구(VP, VC)을 대상으로 15개를 구축하였다. 그리고 구문패턴은 중심어와 중심어 선행 요소의 특성뿐만 아니라 중심어 후행 요소도 고려하여 형식화시킨 것으로, 중심어의 복합용언 여부에 따라 일반용언패턴과 본+보조용언패턴으로 구분한다. 부분적인 언어 현상의 처리보다는 실세계에서 사용되는 수많은 문장들에 내재되어 있는 매우 광범위한 언어 현상의 처리를 하기 위해, 구문패턴은 형태소주석 말뭉치(460만 어절)을 대상으로 자동 구축하였다. 구축된 구문패턴사전과 규칙을 이용하여 구묶음을 수행한 결과 정확율 83.09%가 나타났다.

  • PDF

Morphological Analyzer of Yonsei Univ., morany: Morphological Analysis based on Large Lexical Database Extracted from Corpus (연세대 형태소 분석기 morany: 말뭉치로부터 추출한 대량의 어휘 데이터베이스에 기반한 형태소 분석)

  • Yoon, Jun-Tae;Lee, Chung-Hee;Kim, Seon-Ho;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.92-98
    • /
    • 1999
  • 본 논문에서는 연세대학교 컴퓨터과학과에서 연구되어 온 형태소 분석 시스템에 대해 설명한다. 연세대학교 자연 언어 처리 시스템의 기본적인 바탕은 무엇보다도 대량의 말뭉치를 기반으로 하고 있다는 점이다. 예컨대, 형태소 분석 사전은 말뭉치 처리에 의해 재구성 되었으며, 3000만 어절로부터 추출되어 수작업에 의해 다듬어진 어휘 데이터베이스는 형태소 분석 결과의 상당 부분을 제한하여 일차적인 중의성 해결의 역할을 담당한다. 또한 복합어 분석 역시 말뭉치에서 얻어진 사전을 바탕으로 이루어진다. 품사 태깅은 bigram hmm에 기반하고 있으며 어휘 규칙 등에 의한 후처리가 보강되어 있다. 이렇게 구성된 형태소 분석기 및 품사 태거는 구문 분석기와 함께 연결되어 이용되고 있다.

  • PDF

Improving a Korean Spell/Grammar Checker for the Web-Based Language Learning System (웹기반 언어 학습시스템을 위한 한국어 철자/문법 검사기의 성능 향상)

  • 남현숙;김광영;권혁철
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.3
    • /
    • pp.1-18
    • /
    • 2001
  • The goal of this paper is the pedagogical application of a Korean Spell/Grammar Checker to the web-based language learning system for Korean writing. To maximize the efficient instruction of our learning system \\`Urimal Baeumteo\\` we have to improve our Korean Spell/Grammar Checker. Today the NLP system\\`s performance defends on its semantic processing capability. In our Korean Spell/Grammar Checker. the tasks accomplished in the semantic level are: the detection and correction of misused derived and compound nouns in a Korean spell-checking device and the detection and correction of syntactic and semantic errors in a Korean grammars-checking device. We describe a common approach to the partial parsing using collocation rules based on the dependency grammar. To provide more detailed semantic rules. we classified nouns according to their concepts. and subcategorized verbs referring to their syntactic and semantic features. Improving a Korean Spell/Gl-Grammar Checker makes our learning system active and intelligent in a web-based environment. We acknowledge the flaws in our system: the classification of nouns based on their meanings and concepts is a time consuming task. the analytic unit of this study is principally limited to the phrases in a sentence therefore the accurate parsing of embedded sentences remains a difficult problem to solve. Concerning the web-based language learning system. it is critically important to consider its interface design and structure of its contents.

  • PDF

PPEditor: Semi-Automatic Annotation Tool for Korean Dependency Structure (PPEditor: 한국어 의존구조 부착을 위한 반자동 말뭉치 구축 도구)

  • Kim Jae-Hoon;Park Eun-Jin
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.63-70
    • /
    • 2006
  • In general, a corpus contains lots of linguistic information and is widely used in the field of natural language processing and computational linguistics. The creation of such the corpus, however, is an expensive, labor-intensive and time-consuming work. To alleviate this problem, annotation tools to build corpora with much linguistic information is indispensable. In this paper, we design and implement an annotation tool for establishing a Korean dependency tree-tagged corpus. The most ideal way is to fully automatically create the corpus without annotators' interventions, but as a matter of fact, it is impossible. The proposed tool is semi-automatic like most other annotation tools and is designed to edit errors, which are generated by basic analyzers like part-of-speech tagger and (partial) parser. We also design it to avoid repetitive works while editing the errors and to use it easily and friendly. Using the proposed annotation tool, 10,000 Korean sentences containing over 20 words are annotated with dependency structures. For 2 months, eight annotators have worked every 4 hours a day. We are confident that we can have accurate and consistent annotations as well as reduced labor and time.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

Robust Part-of-Speech Tagger using Statistical and Rule-based Approach (통계와 규칙을 이용한 강인한 품사 태거)

  • Shim, Jun-Hyuk;Kim, Jun-Seok;Cha, Jong-Won;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.60-75
    • /
    • 1999
  • 품사 태깅은 자연 언어 처리의 가장 기본이 되는 부분으로 상위 자연 언어 처리 부분인 구문 분석, 의미 분석의 전처리로 사용되고, 독립된 응용으로 언어의 정보를 추출하거나 정보 검색 등의 응용에 사용되어 진다. 품사 태깅은 크게 통계에 기반한 방법, 규칙에 기반한 방법, 이 둘을 모두 이용하는 혼합형 방법 등으로 나누어 연구되고 있다. 포항공대 자연언어처리 연구실의 자연 언어 처리 엔진(SKOPE)의 품사 태깅 시스템 POSTAG는 미등록어 추정이 강화된 혼합형 품사 태깅 시스템이다 본 시스템은 형태소 분석기, 통계적 품사 태거, 에러 수정 규칙 후처리기로 구성되어 있다. 이들은 각각 단순히 직렬 연결되어 있는 것이 아니라 형태소 접속 테이블을 기준으로 분석 과정에서 형태소 접속 그래프를 생성하고 처리하면서 상호 밀접한 연관을 가진다. 그리고, 미등록어용 패턴사전에 의해 등록어와 동일한 방법으로 미등록어를 처리함으로써 효율적이고 강건한 품사 태깅을 한다. 한편, POSTAG에서 사용되는 태그세트와 한국전자통신연구원(ETRI)의 표준 태그세트 간에 양방향으로 태그세트 매핑을 함으로써, 표준 태그세트로 태깅된 코퍼스로부터 POSTAC를 위한 대용량 학습자료를 얻고 POSTAG에서 두 가지 태그세트로 품사 태깅 결과 출력이 가능하다. 본 시스템은 MATEC '99'에서 제공된 30000어절에 대하여 표준 태그세트로 출력한 결과 95%의 형태소단위 정확률을 보였으며, 태그세트 매핑을 제외한 POSTAG의 품사 태깅 결과 97%의 정확률을 보였다.

  • PDF