최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.135-139
/
2008
본 논문은 영한 기계번역에서 영어 수사가 포함된 영어 명사구를 한국어로 번역할 때, 영어 명사에 대응되는 한국어 명사의 적절한 분류사를 반자동으로 구축하는 방법에 대해 기술한다. 영한 번역의 측면에서, 분류사는 목표언어인 한국어에서만 나타나는 현상이다. 따라서 영어를 한국어로 번역할 때, 적절한 분류사를 생성하지 않으면 한국어 어법에 맞지 않는 부자연스러운 번역 결과를 생성한다. 본 논문에서는 한국어 태그드 코퍼스와 한국어 의미코드 체계에 따라 한국어 분류사를 반자동으로 구축하는 방법을 제안한다. 제안하는 방법에 따라 한국어 명사에 대해서 한국어 분류사가 구축되었으며, 이렇게 구축된 분류사는 영한 기계번역시스템의 번역 사전에 'KCOUNT'라는 자질을 할당하여 부가하였다. 제안하는 방법의 검증을 위해 수동평가와 자동평가를 수행하였으며, 그 결과, 영한 기계번역의 문장 생성에 있어서 자연스러움(fluency)의 측면에서 번역률 향상이 있었다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.163-169
/
2003
현재의 질의응답 시스템은 TREC(Text Retrieval Conference) 질의집합에 대해 최대 80% 정도의 응답 성공률을 보이고 있다. 하지만 질의 유형에 다라 성능의 많은 차이가 있으며, 인과관계에 대한 질의에 대해서는 매우 낮은 응답 성공률을 보이고 있다. 본 연구는 인접한 두 문장 혹은 두 문장 혹은 두 명사구 사이에 존재하는 인과관계를 추출하고자 한다. 기존의 명사구 간 인과관계 추출 연구에서는 인과관계 단서구문과 두 명사구의 의미를 주요한 정보로 사용하였으나, 사전 미등록어가 사용되었을 때 올바른 선택을 하기 어려웠다. 또한, 학습 코퍼스에 대한 인과관계 부착과정이 선행되어야 하며, 다량의 학습자료를 사용하기가 어려웠다. 본 연구에서는 인과관계 명사구 쌍에서 추출된 어휘 쌍을 기존의 단서구문과 같이 사용하는 방법을 제안한다. 인과관계 분류를 위해 나이브 베이즈 분류기를 사용하였으며, 비지도식 학습과정을 사용하였다. 제안된 분류 모델은 기존의 분류 모델과 달리 사전 미등록어에 의한 성능 저하가 없으며, 학습 코퍼스의 인과관계 분류 작업이 선행될 필요 없다. 문장 내 명사구간의 인과관계 추출 실험 결과 79.07%의 정확도를 얻었다. 이러한 결과는 단서구문과 명사구 의미를 이용한 방법에 비해 6.32% 향상된 결과이며, 지도식 학습방식을 통해 얻은 방법과 유사한 결과이다. 또한 제안된 학습 및 분류 모델은 문장간의 인과관계 추출에도 적용가능하며, 한국어에서 인접한 두 문장간의 인과관계 추출 실험에서 74.68%의 정확도를 보였다.
Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
Science of Emotion and Sensibility
/
v.13
no.3
/
pp.449-458
/
2010
As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.138-145
/
2001
자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.
Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.55-60
/
2021
최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.310-315
/
2018
본 논문에서는 한국어 수학 문장제 문제 자동 풀이를 위한 방법을 소개한다. 수학 문장제 문제란 수학적 관계가 언어와 숫자로 주어질 때, 문제에서 요구하는 정보를 도출하는 수학 문제로, 언어 의미 분석과 수학적 관계 추출이 요구된다. 본 논문에서는 이원 일차 연립 방정식을 포함한 514 문제의 영어 데이터셋을 번역해 한국어 문제를 확보하였다. 또한 한국어의 수학적 관계 표현과 언어 유형적 특성을 고려한 자질 추출을 제안하고, 템플릿 기반 Log-linear 모델이 정답 방정식을 분류하도록 학습하였다. 5겹 교차 검증을 실시한 결과, 영어 문제를 풀이한 선행 연구의 정답률 79.7% 대비 1%p 낮은 78.6%의 정답률을 보였다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.55-62
/
2010
수화는 농인 사회에서 주로 사용되는 시각언어로서 음성언어인 한국어와 통사적인 측면에서 많은 차이를 보인다. 특히 수화에서는 조사와 어미가 거의 사용되지 않기 때문에 한국어 문장에서 기존의 방법대로 이들을 제거한 후 어순을 고려하지 않은 채 문장 성분의 기본형을 그대로 나열하여 수화문을 생성할 경우 문장 성분 간의 통사적 관계가 애매해질 수 있다. 본 논문에서는 통사적 중의성이 한국어 문장을 수화문으로 변환하는 과정에서 추가적으로 나타나게 되는 특정 통사구조에 의해 발생하는 것으로 보고, 이러한 통사구조를 기본논항구조, 한정수식구조, 병렬구조, 서술구조로 분류하여 각각을 파악하고 그에 따라 통사적 중의성을 해소하는 방법을 제시한다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.605-607
/
2018
본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.
Park, IlNam;Choi, DongHyun;Shin, MyeongCheol;Kim, EungGyun
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.522-526
/
2018
본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.