• Title/Summary/Keyword: 한국어 문서분류

Search Result 158, Processing Time 0.024 seconds

An Automatic Classification of Korean Documents Using Weight for Keywords of Document and Corpus : Bayesian classifier (문서의 주제어별 가중치와 말뭉치를 이용한 한국어 문서의 자동분류 : 베이지안 분류자)

  • 허준희;고수정;김태용;최준혁;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.154-156
    • /
    • 1999
  • 문서 분류는 미리 정의된 두 개 또는 그 이상의 클래스에 새로 생성되는 객체들을 할당하는 방법이다. 문서의 자동 분류에 대한 연구는 오래 전부터 연구되어 왔지만 한국어에 대한 적용 및 연구는 다른 분야에 비해 아직까지 활발히 이루어지지 않고 있다. 본 논문에서는 문서를 자동으로 분류하기 위해 문서의 주제어에 가중치를 부여하고, 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 주제어들과의 상호정보에 의해 추출된 단어를 사용하여 문서를 표현한 후, 가중치를 부여한 문서의 주제어에 베이지안 분류자를 사용하여 문서분류를 수행한다. 실험은 한국어 정보검색 실험용 데이터 집합인 KTset95 문서 4,414개 중 1,300개의 문서를 학습 집합으로, 1,000개의 문서를 분류에 대한 검증 집합으로 사용하였다. 실험 결과, 순수 베이지안 확률을 사용한 기존의 방법보다 실험 집합과 검증 집합에서 각각 1.92%, 4.3% 향상된 분류 정확도를 얻었다.

  • PDF

Neural Architecture Search for Korean Text Classification (한국어 문서 분류를 위한 신경망 구조 탐색)

  • ByoungKyu Ji
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.125-130
    • /
    • 2023
  • 최근 심층 신경망을 활용한 한국어 자연어 처리에 대한 관심이 높아지고 있지만, 한국어 자연어 처리에 적합한 신경망 구조 탐색에 대한 연구는 이뤄지지 않았다. 본 논문에서는 문서 분류 정확도를 보상으로 하는 강화 학습 알고리즘을 이용하여 장단기 기억 신경망으로 한국어 문서 분류에 적합한 심층 신경망 구조를 탐색하였으며, 탐색을 위해 사전 학습한 한국어 임베딩 성능과 탐색한 신경망 구조를 분석하였다. 탐색을 통해 찾아낸 신경망 구조는 기존 한국어 자연어 처리 모델에 대해 4 가지 한국어 문서 분류 과제로 비교하였을 때 일반적으로 성능이 우수하고 모델의 크기가 작아 효율적이었다.

  • PDF

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

Comparison Between Optimal Features of Korean and Chinese for Text Classification (한중 자동 문서분류를 위한 최적 자질어 비교)

  • Ren, Mei-Ying;Kang, Sinjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2015
  • This paper proposed the optimal attributes for text classification based on Korean and Chinese linguistic features. The experiments committed to discover which is the best feature among n-grams which is known as language independent, morphemes that have language dependency and some other feature sets consisted with n-grams and morphemes showed best results. This paper used SVM classifier and Internet news for text classification. As a result, bi-gram was the best feature in Korean text categorization with the highest F1-Measure of 87.07%, and for Chinese document classification, 'uni-gram+noun+verb+adjective+idiom', which is the combined feature set, showed the best performance with the highest F1-Measure of 82.79%.

A Web-Document Categorization System Using the Hierarchical Information of the Concept (의미의 상하위 정보를 이용한 웹문서 분류시스템)

  • Kang, Won-Seog;Hwang, Do-Sam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.36-39
    • /
    • 1999
  • 본 논문에서는 다양성을 가진 웹문서의 범주를 결정짓는 웹문서 분류 시스템을 설계, 구축한다. 웹문서는 일관된 형식과 내용이 없이 만들어지기 때문에 문서의 범주를 결정하는 시스템을 구축하기는 쉬운 일이 아니다. 제안한 웹문서 분류 시스템은 잡음 처리에 적합한 신경망 방식을 적용하여 다양한 내용의 웹문서의 범주를 결정짓는다. 본 시스템은 한국어 문장을 분석하는 한국어 형태소 해석기, 단어의 의미를 획득하는 개념 획득기, 단어의 사용된 의미를 고르는 애매성 해소기, 그리고 문서의 범주를 결정하는 신경망 범주 결정기로 구성된다. 본 시스템은 단어의 의미를 이용하여 문서를 표현하고 분석하는 개념 중심의 문서 분류 시스템이다.

  • PDF

Lexicon of Semantic-Polarity of Korean Adjectives for the Classification of On-line Opinion Documents (온라인 오피니언 문서 분류를 위한 한국어 형용사 의미 극성 사전)

  • Ahn, Ae-Lim;Shim, Seung-Hye;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.166-171
    • /
    • 2010
  • 본 논문은 한국어 온라인 리뷰 문서의 오피니언 분류(Opinion Classification)에 있어 그 핵심 키워드가 형용사 (Adjective) 범주라는 점을 고려하여, 한국어 형용사를 <문맥에 의존하지 않는 절대 극성>과, <문맥에 의존하여 극성이 바뀌는 상대극성>으로 대분류한 뒤 그 각각의 의미 극성을 하위 분류하는 작업을 수행하였다. 기존의 연구에서 특징적인 오피니언 어휘 수십개에 의존하여 자동 분류를 시도하고자 하였던 문제점을 극복하기 위해서는 한국어 형용사 전체 범주에 대한 체계적인 극성 분류가 이루어져야 할 필요가 있으며, 여기서 특히 상세히 주목받지 못했던 상대 극성 어휘에 대한 본격적인 의미 분류가 요구된다. 본 연구에서 제시하는 형용사의 극성 분류는 기존의 이론 언어학적 형용사 의미 분류와 달리 온라인 오피니언 문서에서 도메인에 따라 나타나는 특징적 의미 유형을 결정하고, 이를 기준으로 온라인 오피니언 문서의 극성 판별에 효과적으로 적용할 수 있는 사전을 구축하였다는 점에서 의의를 가진다.

  • PDF

An Automatic Classification System of Korean Documents Using Weight for Keywords of Document and Word Cluster (문서의 주제어별 가중치 부여와 단어 군집을 이용한 한국어 문서 자동 분류 시스템)

  • Hur, Jun-Hui;Choi, Jun-Hyeog;Lee, Jung-Hyun;Kim, Joong-Bae;Rim, Kee-Wook
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.447-454
    • /
    • 2001
  • The automatic document classification is a method that assigns unlabeled documents to the existing classes. The automatic document classification can be applied to a classification of news group articles, a classification of web documents, showing more precise results of Information Retrieval using a learning of users. In this paper, we use the weighted Bayesian classifier that weights with keywords of a document to improve the classification accuracy. If the system cant classify a document properly because of the lack of the number of words as the feature of a document, it uses relevance word cluster to supplement the feature of a document. The clusters are made by the automatic word clustering from the corpus. As the result, the proposed system outperformed existing classification system in the classification accuracy on Korean documents.

  • PDF

Comparing Korean Spam Document Classification Using Document Classification Algorithms (문서 분류 알고리즘을 이용한 한국어 스팸 문서 분류 성능 비교)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.222-225
    • /
    • 2006
  • 한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.

  • PDF

확률 벡터를 사용한 전자 문서의 개념적 분류 기법

  • 조완섭;김영렬;강원석;강현규
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.53-62
    • /
    • 1997
  • 본 논문에서는 전자문서의 개념적 분류기법을 제안한다. 기존의 문서분류는 대부분 문서에 나타난 용어를 기반으로 분류하므로 개념적인 분류가 불가능하다. 제안된 기법에서는 한국어 시소러스를 사용하여 문서에 나타난 용어 뿐 아니라 용어의 상하위 개념을 기준으로 문서를 분류할 수 있다. 특히, 제안된 방법은 확률 벡터를 사용하는 방식으로써 점진적인 학습이 가능하다는 장점도 가진다.

  • PDF

A Study on Categorization of Korean News Article based on CNN using Doc2Vec (Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구)

  • Kim, Do-Woo;Koo, Myoung-Wan
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF