• Title/Summary/Keyword: 한국어 대화 추론

Search Result 16, Processing Time 0.018 seconds

Constructing Korean Dialogue Natural Inference Dataset through Pseudo Labeling (Pseudo Labeling을 통한 한국어 대화 추론 데이터셋 구축)

  • Young-Jun Lee;Chae-Gyun Lim;Yunsu Choi;Ji-Hui Lm;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.205-209
    • /
    • 2022
  • 페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.

  • PDF

Development of a Dialogue State Tracking System utilizing the Results of Rule and Statistics-based System and Evaluation using User Simulator (규칙 및 통계 기반 시스템의 결과를 활용하는 대화 상태 추적 시스템의 개발 및 사용자 시뮬레이터를 이용한 평가)

  • Shin, Chang-Uk;Chang, Du-Seong;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.518-523
    • /
    • 2020
  • 본 논문에서는 목적 지향 대화 시스템을 위한 대화 상태 추적 시스템과 사용자 시뮬레이터를 설계 및 제안한다. 사용자 시뮬레이터는 작성된 대화 상태 추적 시스템을 평가하기 위한 용도로 사용된다. 본 논문에서 제안하는 대화 상태 추적 시스템은 대화 기록과 함께 사전에 학습된 대화 기록 및 규칙/통계 기반 추론 시스템의 추론 결과를 입력으로 받는다. 그리고 입력된 발화 기록 중 마지막 사용자 발화의 사용자 목표와 개체명 그리고 다음 시스템 발화의 화행을 추론한다. 또한, 작성된 대화 상태 추적기의 성능을 평가하고 분석하기 위해, 주어진 환경에서 시스템과 대화를 수행하며 대화 시스템의 성능을 평가하는 사용자 시뮬레이터를 구현 및 적용하였다. 본 연구에서 수행된 실험과 분석을 통해, 규칙 및 통계 기반의 기반 시스템을 이용해 목표 시스템의 성능 개선이 가능함을 보인다. 또한, 제안하는 사용자 시뮬레이터는 규칙과 통계를 이용해 평가 코퍼스 없이 여러 상황에 대해 대화 시스템의 성능을 평가할 수 있다.

  • PDF

Personality Consistent Dialogue Generation in No-Persona-Aware System (페르소나 대화모델에서 일관된 발화 생성을 위한 연구)

  • Moon, Hyeonseok;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.572-577
    • /
    • 2020
  • 일관된 발화를 생성함에 있어 인격데이터(persona)의 도입을 이용한 연구가 활발히 진행되고 있지만, 한국어 데이터셋의 부재와 데이터셋 생성의 어려움이 문제점으로 지적된다. 본 연구에서는 인격데이터를 포함하지 않고 일관된 발화를 생성할 수 있는 방법으로 다중 대화 시스템에서 사전 학습된 자연어 추론(NLI) 모델을 도입하는 방법을 제안한다. 자연어 추론 모델을 이용한 관계 분석을 통해 과거 대화 내용 중 발화 생성에 이용할 대화를 선택하고, 자가 참조 모델(self-attention)과 다중 어텐션(multi-head attention) 모델을 활용하여 과거 대화 내용을 반영한 발화를 생성한다. 일관성 있는 발화 생성을 위해 기존 NLI데이터셋으로 수행할 수 있는 새로운 학습모델 nMLM을 제안하고, 이 방법이 일관성 있는 발화를 만드는데 기여할 수 있는 방법에 대해 연구한다.

  • PDF

Dialogue Management System for IPTV (IPTV 제어를 위한 대화관리시스템 설계)

  • Kim, Hyun-Jeong;Sung, Joo-Won;Eun, Ji-Hyun;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.40-43
    • /
    • 2009
  • 방통융합의 대표적인 서비스인 IPTV의 상용화로 이용자에게는 방송에 대한 다양한 선택의 자유와 편익을 주고 있다. 본 논문에서는 대화시스템을 통해 IPTV 서비스 이용자가 원격 모바일 환경에서 댁내의 IPTV 셋톱장치의 상태를 조회하고 셋톱장치의 환경설정을 변경하거나, IPTV의 채널이나 컨텐츠를 재생할 수 있는 대화시스템의 구조를 제안한다. 이러한 대화시스템을 이용하여 IPTV 사용자는 원격에서 가정내의 자녀들의 TV 시청을 지도하고, 셋톱장치나 리모컨에 익숙하지 않은 유아나 노년층을 위해 원격에서 컨텐츠 재생이 가능하도록 한다. IPTV 영역에 대한 요구 분석을 통해 화행과 의미구조를 수립하였으며, 1만 3천 대화쌍을 수집하였다. 다양한 IPTV 영역에 대응하기 위해 예제기반 추론 방법과 규칙기반 추론 방법을 결합하여 사용할 수 있도록 하였으며, EPG 검색 모듈을 추론모듈에 추가하였다. 또한 SMS 영역에서의 성능향상을 위한 전처리를 도입하였다.

  • PDF

Zero Pronoun Resolution for Korean-English Spoken Language MT (한국어-영어 대화체 번역시스템을 위한 영형 대명사 해소)

  • Park, Arum;Ji, Eun-Byul;Hong, Munpyo
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.98-101
    • /
    • 2011
  • 이 논문은 한-영 대화체 번역 시스템에서 영형 대명사 해소를 위한 새로운 방법론을 제시하였다. 영형 대명사는 문맥, 상황, 세상 지식으로부터 추론될 수 있는 문장에서 생략된 요소이다. 이 논문은 특히 주어-대명사 생략 현상에 대해 다루고 있는데, 그 이유는 드라마 대본이나 인스턴트 메신저 채팅과 같은 한국어 대화체에서는 매우 일반적인 현상이기 때문이다. 이 논문에서 우리는 많은 양의 지식을 요구하지 않는 간단한 방법론을 제시하였다. 평가결과 우리의 방법은 0.79의 F-measure 스코어를 달성하였고, 전체번역률의 측면에서는 약 4.1% 정도의 향상효과가 있었다.

  • PDF

CommonAI: Quantitative and qualitative analysis for automatic-generation of Commonsense Reasoning sentence suitable for AI (AI에 적합한 일반상식 문장의 자동 생성을 위한 정량적, 정성적 연구)

  • Hyeon Gyu Shin;YoungSook Son
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.153-159
    • /
    • 2022
  • 본 논문에서는 인공지능이 생성하는 일상 대화의 품질 향상을 위해 상식 추론을 정의하고 설문을 통해 정량적, 정성적 분석을 진행하였다. 정량적 평가에서는 주어진 문장이 에게 학습시키기에 적합한가'라는 수용성 판단을 요청한 질문에서 40대 이상의 연령이 20, 30대와 유의미한 차이를 보였다. 정성적 평가에서는 '보편적 사실 여부'를 AI 발화 기준의 주요한 지표로 보았다. 이어서 '챗봇' 대화의 품질에 대한 설문을 실시했다. 이를 통해 일상 대화를 사용한 챗봇의 대화 품질을 높이기 위해서는 먼저, 질문의 요구에 적절한 정보와 공감을 제공해야 하고 두 번째로 공감의 정도가 챗봇의 특성에 맞는 응답이어야 하며 세 번째로 대화의 차례에 따라 담화의 규칙을 지키면서 대화가 진행되어야 한다는 결론을 얻을 수 있었다. 이 세 가지 요건이 통합적으로 적용된 담화 설계를 통해 완전히 인공지능스러운 대화가 가능할 것으로 여겨진다.

  • PDF

Dialogue based multimodal dataset including various labels for machine learning research (대화를 중심으로 다양한 멀티모달 융합정보를 포함하는 동영상 기반 인공지능 학습용 데이터셋 구축)

  • Shin, Saim;Jang, Jinyea;Kim, Boen;Park, Hanmu;Jung, Hyedong
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.449-453
    • /
    • 2019
  • 미디어방송이 다양해지고, 웹에서 소비되는 콘텐츠들 또한 멀티미디어 중심으로 재편되는 경향에 힘입어 인공지능 연구에 멀티미디어 콘텐츠를 적극적으로 활용하고자 하는 시도들이 시작되고 있다. 본 논문은 다양한 형태의 멀티모달 정보를 하나의 동영상 콘텐츠에 연계하여 분석하여, 통합된 형태의 융합정보 데이터셋을 구축한 연구를 소개하고자 한다. 구축한 인공지능 학습용 데이터셋은 영상/음성/언어 정보가 함께 있는 멀티모달 콘텐츠에 상황/의도/감정 정보 추론에 필요한 다양한 의미정보를 부착하여 활용도가 높은 인공지능 영상 데이터셋을 구축하여 공개하였다. 본 연구의 결과물은 한국어 대화처리 연구에 부족한 공개 데이터 문제를 해소하는데 기여하였고, 한국어를 중심으로 다양한 상황 정보가 함께 구축된 데이터셋을 통하여 다양한 상황 분석 기반 대화 서비스 응용 기술 연구에 활용될 것으로 기대할 수 있다.

  • PDF

Using Plan Recognition and a Discourse Stack for Efficient Response Generation in a Dialogue System (대화시스템을 위한 계획인식과 담화스택을 이용한 효과적인 응답 생성)

  • Kang, Sang-Woo;Ko, Young-Joong;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.177-182
    • /
    • 2006
  • 대화 시스템에 관한 기존 연구는 대화 현상에 대한 원리를 이해하는데 초점을 맞춘 연구와 매우 제한적인 상황에서 동작하는 실용적인 시스템 구축에 관한 연구로 이루어져 왔다. 전자의 연구를 위해서 계획기반모델(plan-based model)이 제안되었는데, 이는 복잡한 대화 구조를 모델링(modeling)할 수 있으며, 다양한 현상에서의 사용자 목적 추론이 가능하다. 하지만 계획기반모델은 초기 설계가 어려우며 실용적인 대화 시스템 구축에 있어서 시스템 응답을 생성하기 위한 상호작용 모델로의 확장이 매우 어렵다는 단점이 있다. 본 연구는 이러한 계획 기반 모델의 단점을 보완하고 실용적인 대화시스템을 구축하기 위하여 시스템 응답을 위한 확인 대화 전략과 담화스택(discourse stack)을 계획기반 대화 모델링에 적용하여 효율적인 응답을 생성할 수 있는 기법을 제안한다.

  • PDF

Improving Dialogue Intent Classification Performance with Uncertainty Quantification based OOD Detection (불확실성 정량화 기반 OOD 검출을 통한 대화 의도 분류 모델의 성능 향상)

  • Jong-Hun Shin;Yohan Lee;Oh-Woog Kwon;Young-Kil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.517-520
    • /
    • 2022
  • 지능형 대화 시스템은 줄곧 서비스의 목표와 무관한 사용자 입력을 전달받아, 그 처리 성능을 의심받는다. 특히 종단간 대화 이해 생성 모델이나, 기계학습 기반 대화 이해 모델은 학습 시간대에 한정된 범위의 도메인 입력에만 노출됨으로, 사용자 발화를 자신이 처리 가능한 도메인으로 과신하는 경향이 있다. 본 연구에서는 대화 생성 모델이 처리할 수 없는 입력과 신뢰도가 낮은 생성 결과를 배제하기 위해 불확실성 정량화 기법을 대화 의도 분류 모델에 적용한다. 여러 번의 추론 샘플링이 필요 없는 실용적인 예측 신뢰도 획득 방법과 함께, 평가 시간대와 또다른 도메인으로 구성된 분포 외 입력 데이터를 학습에 노출시키는 것이 분포 외 입력을 구분하는데 도움이 되는지를 실험으로 확인한다.

  • PDF

A Design of Dialogue Interface System Based on Statistical Approach (통계에 기반한 다영영 대화형 도우미 시스템의 설계)

  • Jeong, Hyoung-Il;Kim, Dong-Hyun;Jang, Hyo-Jun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.262-267
    • /
    • 2006
  • 대화 인터페이스 시스템(dialogue interface system)은 인간과 컴퓨터의 상호작용을 위한 도구로서 자연언어(natural language)를 사용하여 정보를 공유하거나 특정 업무를 수행하는 프로그램이다. 대화 인터페이스 시스템에 대한 기존의 연구들은 영역 의존적인 스크립트나 계획 추론을 위한 계획 지식을 이용해 왔다. 스크립트 모델(script model)은 제한적인 실용시스템 개발을 위해 주로 연구되었고 계획에 기반한 모델은 대화의 원리를 이해하는 분야에서 주로 연구되어 왔다. 그러나 기존의 모델들은 시스템 확장이 매우 어려우며 예측하지 못한 사용자 발화에 대하여 대응이 어렵기 때문에 매우 제한적인 영역이나 정해진 형태의 대화만을 처리할 수 있다. 본 논문에서는 이런 단점들을 보완하기 위하여 통계에 기반한 다 영역(multi-domain) 대화 모델을 제안한다. 제안된 시스템은 각 작업들에 대하여 해당 작업에 적합한 영역 모델(domain model)을 잘 알려진 프레임 구조를 따르면서 사용자 의도 파악과 시스템 의도 생성에 통계적 방법을 사용한다. 이러한 하이브리드 형태의 구조 덕분에 제안된 시스템은 영역 확장성과 이식성이 뛰어나다는 장점을 가진다.

  • PDF