• 제목/요약/키워드: 한국어 기계번역 데이터

검색결과 64건 처리시간 0.021초

병렬 코퍼스 필터링과 한국어에 최적화된 서브 워드 분절 기법을 이용한 기계번역 (Parallel Corpus Filtering and Korean-Optimized Subword Tokenization for Machine Translation)

  • 박찬준;김경민;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.221-224
    • /
    • 2019
  • 딥러닝을 이용한 Neural Machine Translation(NMT)의 등장으로 기계번역 분야에서 기존의 규칙 기반,통계기반 방식을 압도하는 좋은 성능을 보이고 있다. 본 논문은 기계번역 모델도 중요하지만 무엇보다 중요한 것은 고품질의 학습데이터를 구성하는 일과 전처리라고 판단하여 이에 관련된 다양한 실험을 진행하였다. 인공신경망 기계번역 시스템의 학습데이터 즉 병렬 코퍼스를 구축할 때 양질의 데이터를 확보하는 것이 무엇보다 중요하다. 그러나 양질의 데이터를 구하는 일은 저작권 확보의 문제, 병렬 말뭉치 구축의 어려움, 노이즈 등을 이유로 쉽지 않은 상황이다. 본 논문은 고품질의 학습데이터를 구축하기 위하여 병렬 코퍼스 필터링 기법을 제시한다. 병렬 코퍼스 필터링이란 정제와 다르게 학습 데이터에 부합하지 않다고 판단되며 소스, 타겟 쌍을 함께 삭제 시켜 버린다. 또한 기계번역에서 무엇보다 중요한 단계는 바로 Subword Tokenization 단계이다. 본 논문은 다양한 실험을 통하여 한-영 기계번역에서 가장 높은 성능을 보이는 Subword Tokenization 방법론을 제시한다. 오픈 된 한-영 병렬 말뭉치로 실험을 진행한 결과 병렬 코퍼스 필터링을 진행한 데이터로 만든 모델이 더 좋은 BLEU 점수를 보였으며 본 논문에서 제안하는 형태소 분석 단위 분리를 진행 후 Unigram이 반영된 SentencePiece 모델로 Subword Tokenization를 진행 하였을 시 가장 좋은 성능을 보였다.

  • PDF

한국어 기계 번역에서의 품질 검증을 위한 치명적인 오류 범위 탐지 모델 (Critical Error Span Detection Model of Korean Machine Translation)

  • 정다현;이승윤;어수경;박찬준;이재욱;박기남;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.80-85
    • /
    • 2023
  • 기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.

  • PDF

단어의 음성학적 특징을 이용한 한국어 기계 번역 데이터 세트 구축 방안 (Proposed Methodology for Building Korean Machine Translation Data sets Considering Phonetic Features)

  • 장칭하오;양홍진;김세린;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.592-595
    • /
    • 2022
  • 한국어에서 한자어와 외래어가 차지하는 비중은 매우 높다. 일상어의 경우 한자어와 외래어의 비중이 약 53%, 전문어의 경우 약 92%에 달한다. 한자어나 외래어는 중국이나 다른 나라로부터 영향을 받아 한국에서 쓰이는 단어들이다. 한국어에서 사용되는 한자어와 외래어의 한글 표기과 원어 표기를 발음해보면, 발음이 상당히 유사하다는 것을 알 수 있다. 한자어인 도서관(图书馆)을 중국어로 발음해보면 thu.ʂu.kwan'로 해당 단어에 대한 한국 사람의 발음과 상당히 유사하다. 본 논문에서는 Source Length, Source IPA Length, Target Length, Target IPA Length, IPA Distance 등 총 5가지의 음성학적 특징을 고려한 한국어-중국어 한국어-영어 단어 기계번역 데이터 세트를 구축하고자 한다.

  • PDF

언어적 특성과 서비스를 고려한 딥러닝 기반 한국어 방언 기계번역 연구 (Deep Learning-based Korean Dialect Machine Translation Research Considering Linguistics Features and Service)

  • 임상범;박찬준;양영욱
    • 한국융합학회논문지
    • /
    • 제13권2호
    • /
    • pp.21-29
    • /
    • 2022
  • 본 논문은 방언 연구, 보존, 의사소통의 중요성을 바탕으로 소외될 수 있는 방언 사용자들을 위한 한국어 방언 기계번역 연구를 진행하였다. 사용한 방언 데이터는 최상위 행정구역을 기반으로 배포된 AIHUB 방언 데이터를 사용하였다. 방언 데이터를 바탕으로 Transformer 기반의 copy mechanism을 적용하여 방언 기계번역기의 성능 향상을 도모하는 모델링 연구와 모델 배포의 효율성을 도모하는 Many-to-one 기반의 방언 기계 번역기를 제안한다. 본 논문은 one-to-one 모델과 many-to-one 모델의 성능을 비교 분석하고 이를 다양한 언어학적 시각으로 분석하였다. 실험 결과 BLEU점수를 기준으로 본 논문이 제안하는 방법론을 적용한 one-to-one 기계번역기의 성능 향상과 many-to-one 기계번역기의 유의미한 성능을 도출하였다.

신경망 기반 기계 번역을 위한 역-번역을 이용한 한영 병렬 코퍼스 확장 (Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation)

  • 허광호;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.470-473
    • /
    • 2018
  • 최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.

  • PDF

한-영 관용구 기계번역을 위한 NMT 학습 방법 (NMT Training Method for Korean-English Idiom Machine Translation)

  • 최민주;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.353-356
    • /
    • 2020
  • 관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.

  • PDF

LyriKOR: 음절을 맞춘 영한 노래 가사 번역 모델 (LyriKOR: English to Korean Song Translation with Syllabic Alignment)

  • 조혜진;홍은빈;오지민;박정환;이병준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.510-516
    • /
    • 2023
  • 세계화가 진행됨에 따라 다양한 문화의 음악을 즐기는 사람들이 늘어나고, 해외 팬들이 외국 노래를 이해하고 따라 부를 수 있는 접근성을 확보하는 것이 중요해졌다. 이를 위해 본 논문에서는 노래 가사 데이터에 특화된 영어-한국어 번역 모델 리리코(LyriKOR)를 제시한다. 리리코는 영어 노래를 한국어로 번역하여 그 의미를 담아낼 뿐만 아니라, 번역 결과물이 원곡의 선율과 리듬에 어느 정도 부합하도록 하여 한국어로 바로 따라 부를 수 있도록 하는 것을 목표로 한다. 이를 위해 번역과 음절 조정의 두 단계(two-stage)를 거쳐 제한된 데이터로 음절 정렬된 번역 모델을 훈련하는 새로운 방법을 소개한다. 모델 코드는 여기에서 볼 수 있다.

  • PDF

한국어 목적격조사의 몽골어 격 어미 번역 (Translation of Korean Object Case Markers to Mongolian's Suffixes)

  • ;신준철;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권2호
    • /
    • pp.79-88
    • /
    • 2019
  • 최근 기계 번역에 관한 연구들이 활발하게 이루어지고 있고 한국어와 몽골어 간의 상호 기계 번역 시스템도 개발되고 있다. 한국어와 몽골어는 계통적으로 같은 어족에 속하며 '주어+목적어+서술어'라는 비교적 자유로운 어순을 가지는 언어이고 어미와 조사가 발달한 것이 그 특징이다. 따라서 기계 번역 시 양언어의 조사나 어미의 의미를 잘 번역하는 것이 중요하다. 그러나 한국어 목적격 조사를 몽골어로 번역할 때 한국어 목적격 조사가 몽골어의 여러 격 어미로 번역이 될 수 있는데, 기존의 연구들은 한 가지 격 어미로만 번역해 정확한 의미를 전달하지 못하는 문제점이 있다. 본 논문에서는 이러한 문제점을 개선하기 위하여 한국어 형태소 분석과 동시에 품사 및 동형이의어 태깅 시스템인 유태거(UTagger)를 기반으로 하여 한국어 목적격 조사의 몽골어 격 어미 결정 방법을 제안한다. 제안하는 방법에서는 한국어 목적격 조사에 대응하는 몽골어 격 어미들을 살펴보고 데이터 테이블을 설계하여 적절한 격 어미를 결정한다. 제안한 방법의 성능을 검증하기 위하여 한국어기초사전에서 데이터를 추출하고 유태거와 비교 실험하였다. 실험 결과 목적격 조사를 바로 대격 어미로 번역한 유태거의 정확률은 46.9%인데 반해 본 논문에서 제안한 방법은 88.38%로 제안한 방법이 41.48%p 더 우수한 결과를 보였다.

의미패턴에 기반한 대화체 한영 기계 번역 (Machine Translation of Korean-to-English spoken language Based on Semantic Patterns)

  • 정천영;서영훈
    • 한국정보처리학회논문지
    • /
    • 제5권9호
    • /
    • pp.2361-2368
    • /
    • 1998
  • 본 논문에서는 한국어대화체를 분석하고 의미패턴에 기반한 대화체 한영 기계번역 시스템에 대하여 기술한다. 한영 기계번역에서 구문정보를 이용한 한국어 모호성은 의미패턴을 이용하여 해결할 수 있다. 따라서 대화체 번역을 위하여 한국어 스케쥴링 도메인으로부터 추출된 의미패턴에 기반한 시스템을 구성한다. 번역의 강건함을 위하여 한국어 문장 분석시 음절을 건너뛰어 분석할 수 있도록 하였으며, 패턴수를 줄이기 위하여 의미패턴에 옵션을 부가하였다. 실험을 위하여 사용된 데이터는 스케쥴링 도메인으로 실험결과 88%의 번역율을 보인다.

  • PDF

사전 정보를 활용한 신경망 기계 번역 (Neural Machine Translation with Dictionary Information)

  • 전현규;김지윤;최승호;김봉수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.86-90
    • /
    • 2023
  • 최근 생성형 언어 모델이 주목받고 있으며, 이와 관련된 과제 또한 주목받고 있다. 언어 생성과 관련하여 많은 연구가 진행된 분야 중 하나가 '번역'이다. 번역과 관련하여, 최근 인공신경망 기반의 신경망 기계 번역(NMT)가 주로 연구되고 있으며, 뛰어난 성능을 보여주고 있다. 하지만 교착어인 한국어에서 언어유형학 상의 다른 분류에 속한 언어로 번역은 매끄럽게 번역되지 않는다는 한계가 여전하다. 따라서, 본 논문에서는 이러한 문제점을 극복하기 위해 한-영 사전을 통한 번역 품질 향상 방법을 제안한다. 또한 출력과 관련하여 소형 언어모델(sLLM)을 통해 CoT데이터셋을 구축하고 이를 기반으로 조정 학습하여 성능을 평가할 것이다.

  • PDF