Annual Conference on Human and Language Technology
/
2022.10a
/
pp.225-231
/
2022
최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.9-15
/
2021
기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.236-238
/
2019
신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.629-632
/
2021
기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.199-203
/
2007
본 논문에서는 한영 통계기반 기계번역에서 한국어 문장 길이의 변화에 따른 번역 성능의 변화를 분석하고자 한다. 일반적으로 통계기반 기계번역은 정렬기법을 이용하는데 문장의 길이가 길수록 많은 변형(distortion)이 이루어진다. 특히 한국어와 영어처럼 어순이 매우 다를 경우, 문장 길이의 변화에 따라 그 변형이 더욱 심할 수 있다. 본 논문에서는 이러한 성질이 통계기반 기계번역에 어떠한 영향을 주는지를 실험적으로 살펴보고자 한다. 본 논문에서 비교적 잘 정렬된 203,310개의 문장을 학습데이터로 사용하였고, 세종 병렬 말뭉치로부터 89,309개의 문장을 추출하여 실험데이터로 사용하였다. 실험데이터는 한국어 문장의 길이에 따라 5구간($1{\sim}4,\;5{\sim}8,\;9{\sim}13,\;14{\sim}19,\;20{\sim}n$ 개)로 나뉘었다. 각 구간은 가능한 문장의 수가 비슷하도록 하였으며, 17,126, 18,507, 20,336, 17,884, 15,456개의 문장이 포함되었다. 데이터들은 모두 어절단위로 토큰을 나누었다. 본 논문에서는 한영 번역을 중심으로 평가되었다. 첫 번째 구간에서 가장 좋은 성능인 0.0621 BLEU를 보였으며, 마지막 구간에서 가장 좋지 않은 0.0251 BLEU를 보였다. 이는 문장의 길이가 길수록 변역 성능이 좋지 않음을 알 수 있었다. 문장이 길수록 구가 길어지고 구간의 수식이 복잡해지므로 번역의 성능은 점차 떨어진다. 이것을 볼 때, 구번역을 먼저 한 후, 다시 문장 번역을 한다면 좀 더 높은 기계번역의 성능을 기대할 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.490-495
/
2021
표준어와 방언사이에는 위계가 존재하지 않고 열등하지 않다는 사상을 기반으로 방언을 보존하기 위한 다양한 노력들이 이루어지고있다. 또한 동일한 국가내에서 표준어와 방언간의 의사소통이 잘 이루어져야한다. 본 논문은 방언 연구보존과 의사소통의 중요성을 바탕으로 한국어 방언 기계번역 연구를 진행하였다. 대표적인 방언 중 하나인 제주어와 더불어 강원어, 경상어, 전라어, 충청어 기반의 기계번역 연구를 진행하였다. 공개된 AI Hub 데이터를 바탕으로 Transformer기반 copy mechanism을 적용하여 방언 기계번역의 성능을 높이는 모델링 연구를 진행하였으며 모델배포의 효율성을 위하여 Many-to-one기반 universal한 방언 기계번역기를 개발하였고 이를 one-to-one 모델과의 성능비교를 진행하였다. 실험결과 copy mechanism이 방언 기계번역 모델에 매우 효과적인 요소임을 알 수 있었다.
한국어는 형태론적으로 굴절어에 속하는 언어로서, 어휘의 형태가 문장 속에서 문법적인 기능을 하게 되고, 형태론적으로 풍부한 언어라는 특징 때문에 조사나 어미와 같은 기능어들이 다양하게 내용어들과 결합한다. 이와 같은 특징들은 한국어를 대상으로 하는 구 기반 통계적 기계번역 시스템에서 데이터 부족문제(Data Sparseness problem)를 더욱 크게 부각시킨다. 하지만, 한국어의 몇몇 조사와 어미는 함께 결합되는 내용어에 따라 의미는 같지만 두 가지의 형태를 가지는 이형태로 존재한다. 따라서 본 논문에서 이러한 이형태들을 하나로 표준화하여 데이터부족 문제를 완화하고, 베트남-한국어 통계적 기계 번역에서 성능이 개선됨을 보였다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.285-290
/
2016
한국어는 형태론적으로 굴절어에 속하는 언어로서, 어휘의 형태가 문장 속에서 문법적인 기능을 하게 되고, 형태론적으로 풍부한 언어라는 특징 때문에 조사나 어미와 같은 기능어들이 다양하게 내용어들과 결합한다. 이와 같은 특징들은 한국어를 대상으로 하는 구 기반 통계적 기계번역 시스템에서 데이터 부족 문제(Data Sparseness problem)를 더욱 크게 부각시킨다. 하지만, 한국어의 몇몇 조사와 어미는 함께 결합되는 내용어에 따라 의미는 같지만 두 가지의 형태를 가지는 이형태로 존재한다. 따라서 본 논문에서 이러한 이형태들을 하나로 표준화하여 데이터부족 문제를 완화하고, 베트남-한국어 통계적 기계 번역에서 성능이 개선됨을 보였다.
Jin Seong;Seung-heon Han;Jong-hun Shin;Soo-jong Lim;Oh-woog Kwon
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.603-608
/
2023
본 연구는 한국어 Vision-Language Pre-training 모델 학습을 위한 대규모 시각-언어 멀티모달 데이터셋 구축에 대한 필요성을 연구한다. 현재, 한국어 시각-언어 멀티모달 데이터셋은 부족하며, 양질의 데이터 획득이 어려운 상황이다. 따라서, 본 연구에서는 기계 번역을 활용하여 외국어(영문) 시각-언어 데이터를 한국어로 번역하고 이를 기반으로 생성형 AI를 활용한 데이터셋 구축 방법론을 제안한다. 우리는 다양한 캡션 생성 방법 중, ChatGPT를 활용하여 자연스럽고 고품질의 한국어 캡션을 자동으로 생성하기 위한 새로운 방법을 제안한다. 이를 통해 기존의 기계 번역 방법보다 더 나은 캡션 품질을 보장할 수 있으며, 여러가지 번역 결과를 앙상블하여 멀티모달 데이터셋을 효과적으로 구축하는데 활용한다. 뿐만 아니라, 본 연구에서는 의미론적 유사도 기반 평가 방식인 캡션 투영 일치도(Caption Projection Consistency) 소개하고, 다양한 번역 시스템 간의 영-한 캡션 투영 성능을 비교하며 이를 평가하는 기준을 제시한다. 최종적으로, 본 연구는 ChatGPT를 이용한 한국어 멀티모달 이미지-텍스트 멀티모달 데이터셋 구축을 위한 새로운 방법론을 제시하며, 대표적인 기계 번역기들보다 우수한 영한 캡션 투영 성능을 증명한다. 이를 통해, 우리의 연구는 부족한 High-Quality 한국어 데이터 셋을 자동으로 대량 구축할 수 있는 방향을 보여주며, 이 방법을 통해 딥러닝 기반 한국어 Vision-Language Pre-training 모델의 성능 향상에 기여할 것으로 기대한다.
Park, Chanjun;Jeong, Sol;Yang, Kisu;Lee, Sumi;Joe, Jaechoon;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.368-372
/
2019
맞춤법 교정이란 주어진 문장에서 나타나는 철자 및 맞춤법 오류들을 올바르게 교정하는 것을 뜻하며 맞춤법 교정 시스템이란 컴퓨터가 이를 자동으로 수행하는 것을 의미한다. 본 논문에서는 맞춤법 교정을 기계번역의 관점으로 바라보고 문제를 해결하였다. 소스문장에 맞춤법 오류문장, 타겟 문장에 올바른 문장을 넣어 학습시키는 방법을 제안한다. 본 논문에서는 단일 말뭉치로 한국어 맞춤법 병렬 말뭉치를 구성하는 방법을 제안하며 G2P(Grapheme to Phoneme)를 이용한 오류 데이터 생성, 자모 단위 철자 오류데이터 생성, 통번역 데이터 기반 오류 데이터 생성 크게 3가지 방법론을 이용하여 맞춤법 오류데이터를 생성하는 방법론을 제안한다. 실험결과 GLEU 점수 65.98의 성능을 보였으며 44.68, 39.55의 성능을 보인 상용화 시스템보다 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.