• Title/Summary/Keyword: 한국어 교정

Search Result 118, Processing Time 0.026 seconds

Spelling Correction in Korean Using the `Eojeol` generation Dictionary (어절 생성 사전을 이용한 한국어 철자 교정)

  • Lee, Yeong-Sin;Park, Yeong-Ja;Song, Man-Seok
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.98-104
    • /
    • 2001
  • 본 논문에서는 어절 생성 사전을 이용한 한국어 철자 교정을 제안한다. 어절 생성 사전은 두 문자열 간 음절 특성이 고려된 편집 거리 계산을 기반으로 탐색되어 언어와 오류 유형에 의존적인 정보를 이용하지 않고 오류 어절에 대한 후보 어절을 생성한다. 또한 교정된 어절들의 가능한 형태소 분석들을 산출하여 후보들 간의 순위 계산 시에 재차 형태소 분석을 수행하지 않고 언어 정보를 적용할 수 있다. 본 논문에서 제안하는 철자 교정은 두 단계로 구성된다. 첫째, 오류 어절로부터 가능한 오류 정정 어간들을 계산한다. 둘째, 계산된 어간들로부터 어절 생성 사전을 탐색하여 원형 후보 어절들을 생성한다. 또한 품사 태깅과 공기 정보를 사용하여 오류 수정된 결과의 순위를 매긴다. 본 시스템의 자동 철자 교정 성능을 평가한 결과 3,000개의 어절에서 시험한 결과 단어 수준으로 93%가 옳게 교정되었다.

  • PDF

Error Correction for Korean Speech Recognition using a LSTM-based Sequence-to-Sequence Model

  • Jin, Hye-won;Lee, A-Hyeon;Chae, Ye-Jin;Park, Su-Hyun;Kang, Yu-Jin;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.

Sentence Unit De-noising Training Method for Korean Grammar Error Correction Model (한국어 문법 오류 교정 모델을 위한 문장 단위 디노이징 학습법)

  • Hoonrae Kim;Yunsu Kim;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.507-511
    • /
    • 2022
  • 문법 교정 모델은 입력된 텍스트에 존재하는 문법 오류를 탐지하여 이를 문법적으로 옳게 고치는 작업을 수행하며, 학습자에게 더 나은 학습 경험을 제공하기 위해 높은 정확도와 재현율을 필요로 한다. 이를 위해 최근 연구에서는 문단 단위 사전 학습을 완료한 모델을 맞춤법 교정 데이터셋으로 미세 조정하여 사용한다. 하지만 본 연구에서는 기존 사전 학습 방법이 문법 교정에 적합하지 않다고 판단하여 문단 단위 데이터셋을 문장 단위로 나눈 뒤 각 문장에 G2P 노이즈와 편집거리 기반 노이즈를 추가한 데이터셋을 제작하였다. 그리고 문단 단위 사전 학습한 모델에 해당 데이터셋으로 문장 단위 디노이징 사전 학습을 추가했고, 그 결과 성능이 향상되었다. 노이즈 없이 문장 단위로 분할된 데이터셋을 사용하여 디노이징 사전 학습한 모델을 통해 문장 단위 분할의 효과를 검증하고자 했고, 디노이징 사전 학습하지 않은 기존 모델보다 성능이 향상되는 것을 확인하였다. 또한 둘 중 하나의 노이즈만을 사용하여 디노이징 사전 학습한 두 모델의 성능이 큰 차이를 보이지 않는 것을 통해 인공적인 무작위 편집거리 노이즈만을 사용한 모델이 언어학적 지식이 필요한 G2P 노이즈만을 사용한 모델에 필적하는 성능을 보일 수 있다는 것을 확인할 수 있었다.

  • PDF

Adaptive English Context-Sensitive Spelling Error Correction Techniques for Language Environments (언어 사용환경에 적응적인 영어 문맥의존 철자오류 교정 기법)

  • Kim, Minho;Jin, Jingzhi;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.133-136
    • /
    • 2015
  • 문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.

  • PDF

Implementation of Korean Error Correction System (한국어 오류 교정 시스템의 구현)

  • Choi, Jae-hyuk;Kim, Kweon-yang
    • The Journal of Korean Association of Computer Education
    • /
    • v.3 no.2
    • /
    • pp.115-127
    • /
    • 2000
  • Korean error detectors of word processors have defects such as inconvenience that users choose one of error groups, lower detecting rate of 60%, and slow processing time. In this study, I proposed a resolution method of these defects. For these, I applied bidirectional longest match strategy for morphological analysis to improve processing time. I suggested dictionaries and several algorithms such as seperation of compound noun and assistant declinable words, correction of typing error to improve processing time and to guarantee correction accuracy. I also suggested a distinguishable method for dependent noun/suffix and Josa/Eomi where many ambiguities are generated, and a distinguishable method for Korean "로써/로서" to improve the reliability of the correction system.

  • PDF

Adaptive Context-Sensitive Spelling Error Correction System Based on Self-Attention for Social Network Service Chatting Data (SNS 채팅 데이터에 적응적인 Self-Attention 기반 문맥의존 철자오류 교정 시스템)

  • Choi, Hyewon;Jang, Daesik;Son, Dongcheol;Lee, Seungwook;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.362-367
    • /
    • 2019
  • 본 논문에서는 Self-Attention을 활용한 딥러닝 기반 문맥의존 철자오류 교정 모델을 제안한다. 문맥의존 철자오류 교정은 최근 철자오류 교정 분야에서 활발히 연구되고 있는 문제 중 하나이다. 기존에는 규칙 기반, 확률 기반, 임베딩을 활용한 철자오류 교정이 연구되었으나, 아직 양질의 교정을 수행해내기에는 많은 문제점이 있다. 따라서 본 논문에서는 기존 교정 모델들의 단점을 보완하기 위해 Self-Attention을 활용한 문맥의존 철자오류 교정 모델을 제안한다. 제안 모델은 Self-Attention을 활용하여 기존의 임베딩 정보에 문맥 의존적 정보가 반영된 더 나은 임베딩을 생성하는 역할을 한다. 전체 문장의 정보가 반영된 새로운 임베딩을 활용하여 동적으로 타겟 단어와의 관련 단어들을 찾아 문맥의존 철자 오류교정을 시행한다. 본 논문에서는 성능평가를 위해 세종 말뭉치를 평가 데이터로 이용하여 제안 모델을 실험하였고, 비정형화된 구어체(Kakao Talk) 말뭉치로도 평가 데이터를 구축해 실험한 결과 비교 모델보다 높은 정확율과 재현율의 성능향상을 보였다.

  • PDF

Korean Spelling Corrector Based on Corpus Analysis (말뭉치를 기반으로 한 한국어 철자 교정기의 구현)

  • Lee, Byeong-Hun;Yun, Jun-Tae;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.285-293
    • /
    • 1993
  • 대량의 말뭉치에서 나타나는 맞춤법 오류의 대부분은 타자수의 입력 실수로 인한 것이다. 맞춤법 오류의 유형은 크게 띄어 쓰기 오류, 철자 오류, 띄어 쓰기와 철자의 복합 오류의 세 가지로 나타난다. 이 중, 철자 오류를 표층 형태만으로 표준어 오류, 조사/어미 오류, 자소 대치 오류로 유형을 분류하였다. 본 논문은 300만 말뭉치에서 형태소 분석이 실패한 맞춤법 오류 어절 중에서 띄어 쓰기와 철자 오류를 분석하여, 각 오류 유형에 따른 교정 방법과 자소 대치 규칙 베이스를 이용한 교정 방법을 구현하였다. 또한 형태소 분석기를 거친 40만 어절 사전을 이용한 분석기로 기존의 형태소 분석기를 대치시켜 교정 어절을 검증하였고, 위의 사전에서 추출한 순위 결정 요소와 Heuristic 정보를 이용하여 각 후보 어절에 대한 가중치를 계산하고 가능성이 높은 교정 어절을 제시하는 시스템을 구현하였다.

  • PDF

Improving of the Correction Methods for a Korean Spell/Grammar Checker (한국어 철자 검사기의 교정기법 개선)

  • Kim, Kwang-Young;Nam, Hyeon-Sook;Park, Su-Ho;Park, Jin-Hee;Gwon, Hyeok-Cheol
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.89-94
    • /
    • 2000
  • 본 논문은 부산대 철자 검사/교정기의 기존 성능을 보완하고 기능을 추가하는데 중점을 두었다. 웹 문서, 신문 등을 통해서 사용자들이 자주 틀리는 오류 단어에 대해서 오류 유형을 분류했다. 이 결과를 철자 검사 및 교정 시스템에 적용하여 교정기법 개선을 통하여 띄어쓰기 교정 기능을 향상 시켰다. 이렇게 새로 구현한 시스템과 이전 시스템의 성능을 실험을 통해 비교 분석하였다. 본 연구를 진행하면서 발견한 문제점과 한계를 이후 더 발전 해야할 과제로 고찰하고 결론을 맺는다.

  • PDF

Analysis of Predicate/Arguments Syntactico-Semantic Relation for the Extension of a Korean Grammar Checker (한국어 문법 검사기의 기능 확장을 위한 서술어와 논항의 통사.의미적 관계 분석)

  • Nam, Hyeon-Suk;Son, Hun-Seok;Choi, Seong-Pil;Park, Yong-Uk;So, Gil-Ja;Gwon, Hyeok-Cheol
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.403-408
    • /
    • 1997
  • 언어의 내적 특성을 반영하는 의미 문체의 검사 및 교정은 언어의 형태적인 면과 관련있는 단순한 철자 검사 및 교정에 비해 더 난해하고 복잡한 양상을 띤다. 본 논문이 제안하는 의미 정보를 이용한 명사 분류 방법은 의미와 문체 오류의 포착과 수정 기능을 향상시키기 위한 방법의 하나이다. 이 논문은 문맥상 용법이 어긋나는 서술어를 교정하기 위해 명사 의미 분류방법을 서술어/논항의 통사 의미적 관계 분석에 이용하여 의미 규칙을 세우는 과정을 서술한다. 여기서 논항인 명사의 의미 정보를 체계적으로 분류하기 위해 시소러스 기법과 의미망을 응용한다. 서술어와 논항 사이의 통사 의미적 관계에 따라 의미 문체 오류를 검사하고 교정함으로써 규칙들을 일반화하여 구축하게 하고 이미 존재하고 있는 규칙을 단순화함으로써 한국어 문법 검사기의 기능을 보완한다.

  • PDF

Improving Recall for Context-Sensitive Spelling Correction Rules Through Integrated Constraint Loosening Method (통합적 제약완화 방식을 통한 한국어 문맥의존 철자오류 교정규칙의 재현율 향상)

  • Choi, Hyunsoo;Yoon, Aesun;Kwon, Hyukchul
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.412-417
    • /
    • 2015
  • Context-sensitive spelling errors (CSSE) are hard to correct, since they are perfect words when analyzed alone. Determined only by considering the semantic and syntactic relations of their context, CSSEs affect largely the performance of spelling and grammar checkers. The existing Korean Spelling and Grammar Checker (KSGC 4.5) adopts a rule-based method, which uses hand-made correction rules for CSSEs. Using rule-based method, the KSGC 4.5 is designed to obtain the very high precision, which results in the extremely low recall. In this paper, we integrate our previous works that control the CSSE correction rules, in order to improve the recall without sacrificing the precision. In addition to the integration, facultative insertion of adverbs and conjugation suffix of predicates are also considered, as for constraint-loosening linguistic features.