자연에는 팔라듐을 주성분으로 하는 백금족광물이 다수 산출되고 있다. 그 중 일부 광물은 독립된 광물로서 결정학적 광물학적 연구가 잘 되어 있는 반면 아직도 광물로서의 특성이 완전하게 규명되지 못한 경우도 상당수가 있다. 따라서 이 연구에서는 팔라듐-안타몬-테루르 성분계를 택해 이 3성분계에서의 상관계를 $1000^{\circ}C$, $800^{\circ}C$, $600^{\circ}C$에서 각각 연구하고 이들 연구결과를 천연광물을 보다 체계적으로 규명 보완하는데 적용시키는 것을 그 연구 목적을 두었다. 합성실험을 위해 순수한 원소물질을 정량적으로 혼합시킨 후 실리카 튜브에 넣고 진공상태에서 밀봉하였다. 전기 고온로에서 가열반응시킨 시료는 얼음물을 이용해 급냉시켰으며 반응물은 반사현미경, 전자현미분석, X선 회절법 등으로 분석하였다. $1000^{\circ}C$에서 안정한 고체로는 Pd, $Pd_{20}Sb_7$, $Pd_8Sb_3$, $Pd_{31}Sb_{12}$, $Pd_5Sb_2$가 있다. $800^{\circ}C$에서는 $Pd_5Sb_3$, PdSb, $Pd_8Te_3$, $Pd_7Te_3$, $Pd_{20}Tc_7-PdSb_7$ 완전고용체가 추가로 존재한다. $600^{\circ}C$에서는 $PdSb_2$, $Pd_{17}Te_4$, $Pd_9Te_4$, PdTe, $PdTe_2$, $Sb_2Te_3$, Sb, 그 밖에 PdSb-PdTe와 PdTe-$PdTe_2$ 고용체가 다시 안정한 고체 화합물로 추가된다. 모든 고체 화합물이 Sb와 Te간의 원소치환에 의해 고용체를 이루고 있으며 그 고용한계의 범위는 생성온도에 따라 변한다. Pd-Sb화합물에서 안티몬(Sb)를 치환하는 테루르(Te) 최대 치환범위(at.%)는 $Pd_8Sb_3$에서 44.3, $Pd_{31}Sb_{12}$에서 52.0, $Pd_5Sb_2$에서 46.2이며 그 최대 치환현상은 $800^{\circ}C$에서 일어난다. $Pd_5Sb_3$와 $PdSb_2$에서의 최대 치환은 $600^{\circ}C$에서 일어나며 그 정도는 각각 15.3, 68.3이다. Pd-Te화합물에서 Te를 치환하는 Sb의 최대치(at.%)는 $Pd_8Te_3$가 $800^{\circ}C$에서 34.5, $Pd_7Te_3$, $Pd_{17}Te_4$, $Pd_9Te_4$, $PdTe_2$는 $600^{\circ}C$에서 각각 41.6, 5.2, 19.1로 나타난다. $Pd_9Te_4$, PdTe, $PdTe_2$, $Pd_8Sb_3$, PdSb, $Sb_2Te_3$는 각각 tellurantimony와 일치하며 광학적 결정구조적 성질이 매우 잘 일치한다. 지금까지 등축정계의 Pa3구조를 가지고 있는 것으로 알려진 $PdSb_2$화합물은 Gandolfi camera와 Guinier camera법에 의해 310으로 격자 지수화할 수 있는 $2.035{\AA}$ peak가 일정하게 기록이 되므로 $P2_13$공간군에 속하는 것으로 재평가 된다. Testibiopal1adite의 성분을 가지는 PdSbTe성분의 화합물을 합성하여 X선 회절분석을 실시하면 testibiopalladite의 X선 회절양상과 일치함을 알 수 있다. 이 사실은 testibiopalladite가 등축정계이며 동시에 $P2_13$공간군에 속하는 $PdSb_2-Pd(Sb_{0.32}Te_{0.68})$고용체의 일부분에 속하는 광물임을 알 수 있게 한다. 따라서 현재의 testibiopalladite의 이상화학식인 PdSbTe는 PdTe(Sb, Te)로 바뀌어져야 할 것으로 믿어진다. $Pd_3SbTe_4$로 표현되는 borovskite는 $1000^{\circ}{\sim}600^{\circ}C$의 온도범위에서는 존재하지 않음을 알 수 있다.