• Title/Summary/Keyword: 한계지지하중

Search Result 63, Processing Time 0.024 seconds

Characteristics of Bearing Capacity and Stress Concentration of Clay Ground Improved with Sand Compaction Piles (SCP 보강 점성토 지반의 지지력 및 응력분담특성)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • This paper is the results of experimental and numerical works on the investigating design factors influencing the bearing capacity, the ratio of stress concentration, and the failure mechanism of the clay ground improved with sand compaction piles (SCP). In order to find the behavior of the clay ground improved with SCP, extensive centrifuge model experiments were carried out for each of the SCP replacement ratio of 20, 40, and $70\%$, the non-plastic fine contents in sand of 5, 10, and $15\%$, and the ratio of the improved width to the loaded area (W/B) of 1, 2, and 3. The commertially available software of FEM, CRISP, was used to analyze test results by performing numerical estimations. In these numerical analyses the sand compaction piles and the clay ground were simulated as a linear elastic and plastic constitutive model and the modified Cam-clay model, based on Critical State Soil Mechanics, respectively.

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

Finite Element Analysis on the Behavior of Soil under a Footing (기초(基礎)아래 지반(地盤)의 거동에 대한 유한요소(有限要所) 해석(解析))

  • Lee, Yeong Saeng;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.167-176
    • /
    • 1991
  • Finite element programs are developed, adopting the hyperbolic model and the Cam-clay model. In the hyperbolic model, a new model taking into account the volume change during shear is proposed and a new technique considering the density change underneath a footing is proposed. And a computing algorithm considered as more reasonable than existing one is presented. In the Cam-clay model, the deveoloped program is applied to sand, the case not recorded much, and then it is tried to analiza the behavior of sand from the viewpoint of the critical state concept. For this, the conventional CD triaxial compression tests and the footing model tests are carried out. The results are improved by 60 percent by using the modified hyperbolic model proposed. When the Cam-clay model is applied to sand, a model reflecting the overconsolidation effects and a computing algorithm accounting for the strain softening are needed. The results obtained by using the Cam-clay model are not much influenced by the value of the initial poisson's ratio, but those of the modified hyperbolic model are much influenced by that. So th values of the initial poisson's ratio must be selected deliberately in the numerical analysis.

  • PDF

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Evaluation of Residual Tensile Load of Field Ground Anchors Based on Long-Term Measurement (현장 그라운드 앵커 장기거동 분석을 통한 잔존긴장력 평가)

  • Park, Seong-yeol;Lee, Sangrae;Jung, Jonghong;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.35-47
    • /
    • 2020
  • For permanent anchors used for slope reinforcement, bearing capacity and durability should be secured during the period of use. However, according to recent domestic and foreign studies, phenomena such as tension fractures, damage to anchorages, deformation and damage to slope and reduction of residual load over time have been reported along the long-term behavior of the anchors. These problems are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs and relevant facility collapse. It is necessary to improve maintenance procedures and methods of ground anchors more practically. In this study, the problems and limitations of domestic maintenance methods were analyzed by conducting a literature study, and the measurement data of load cells installed on the install ground anchors were analyzed to determine the change in the residual load with regard to the elapsed date of the anchors. Based on the results, the effect of the construction conditions of anchors and the soil compositions on the increase and decrease of load were identified.

An analysis of horizontal deformation of a pile in soil using a beam-on-spring model for the prediction of the eigenfrequency of the offshore wind turbine (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 탄성지지보 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Kim, Tae-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2016
  • In the prediction of response of a pile in soil, numerical approaches such as a finite element method are generally applied due to complicate nonlinear behaviors of soils. However, the numerical methods based on the finite elements require heavy efforts in pile and soil modelling and also take long computing time. So their usage is limited especially in the early design stage in which principal dimensions and properties are not specified and tend to vary. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to model and take short computing time. Therefore, if they are validated to be reliable, they would be applicable in predicting responses of a pile in soil, particularly in early design stage. In case of wind turbines regarded in this study, it is required to assess their natural frequencies in early stages, and in this simulation the supporting pile inserted in soil could be replaced with a simplified elastic boundary condition at the bottom end of the wind turbine tower. To do this, analysis for a pile in soil is performed in this study to extract the spring constants at the top end of the pile. The pile in soil can be modelled as a beam on elastic spring by assuming that the soils deform within an elastic range. In this study, it is attempted to predict pile deformations and influence factors for lateral loads by means of the beam-on-spring model. As two example supporting structures for wind turbines, mono pile and suction pile models with different diameters are examined by evaluating their influence factors and validated by comparing them with those reported in literature. In addition, the deflection profiles along the depth and spring constants at the top end of the piles are compared to assess their supporting features.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

Clinical outcomes of implant supported fixed-hybrid prostheses in the fully edentulous arches (완전무치악 환자에서 고정성 임플란트 하이브리드 수복물의 임상성적)

  • Huh, Yoon-Hyuk;Yi, Yang-Jin;Kwon, Min-Jung;Kim, Young-Kyun;Cha, Min-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate clinical outcomes of implant supported fixed-hybrid prostheses (FHP) in the fully edentulous arches. Materials and methods: Patients in this retrospective study were restored with fixed-hybrid prostheses supported by 4 to 6 implants and functioned more than 1 year of loading. Outcome measures were marginal bone change of implant related with sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients, tilting of posterior implant by Mann- Whitney U test and cantilever length of superstructure by regression analysis, and complication rates. Significance level was set P<.05. Results: A total number of 84 implants (16 restorations) placed in 16 patients were observed for 28 months and mean marginal bone loss was $0.53{\pm}0.39mm$. There were no differences of marginal bone loss according to sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients (P>.05), and cantilever length was not significantly related with a marginal bone loss of implant next to cantilever (P>.05). Complication was shown in 11 patients and veneer fracture and dislodging of artificial teeth were most prevalent. Conclusion: Within the limitations of this study, although marginal bone loss of FHP was very little, complication rates were high. Irrespective of tilting of most posterior implants, marginal bone loss of most posterior implants next to cantilever was less than those of the other implants positioned anteriorly. Cantilever length (<17 mm) did not affect a marginal bone loss of most posterior implants.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.