• Title/Summary/Keyword: 한계응력 강도

Search Result 204, Processing Time 0.024 seconds

A Study on the Evaluation of Safety Stiffness from Ship's Mooring Bollards (선박 접안용 계선주의 안전 강성 평가에 관한 연구)

  • Yu, Yong-Ung;Kim, Seung-Yeon;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Mooring bollards are the mandatory facility in ports for they are the objects used to fasten the ship to its position at the berth. All the mooring bollards were installed following suggested sizes, numbers, materials and shape of installation according to Port and Fishing Design Standards. However, Korea has no management standard for use of mooring bollards to safety in ship berthing. In this research, the installation standard for mooring bollards including the holding power applied to mooring bollards in berthing was studied. Also, the performance of mooring bollards for minimum safety guarantee in berthing based on research of various specification by their sizes was analyzed. The analysis on mooring bollards was examined by each power on mooring bollards from the applied force in berthing divided into horizontal and vertical direction in order to examine the performance of domestic mooring bollards, the limit force is calculated based on detailed specification research result. As a result, the working stress according to the towing force was found to be at least 150Mpa and it was evaluated to be 60% of the limit strength. Also, by comparing each forces, the appropriateness was examined and the specification of maximum capability calculated. This performance evaluation method based on detail specification of mooring bollards will be expected to be useful to examine the appropriateness of mooring bollards for various types of vessel in berthing and to develop maintenance and management standard through the performance change evaluation referring to mooring bollard detailed specification changes.

Evaluation of fire resistance according to load ratio and limit temperature (하중비와 한계온도에 의한 강구조 부재의 내화성능평가법 제안)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.395-399
    • /
    • 2010
  • 강구조 부재의 내화성능평가를 위한 비재하가열시험은 강재 허용온도로 평가되고 있으나, 강재의 허용온도 설정은 H형강 부재의 최대하중로 평가되는 한계용도와 고온에서의 강소재의 허용응력도 능력으로 설정되었으므로 실지 작용되는 강구조 부재의 하중조건과 다양한 부재의 종류 등의 관점에서 허용온도의 적용은 다소 불합리한 점이 있다고 판단된다. 따라서 본 연구에서는 강구조 건축물에서의 부재에 작용하는 하중에 따른 내화성능의 차이를 보이고 이에 따른 합리적인 내화성능 평가방법을 제안하고자 한다.

  • PDF

A Nonlinear Material Model for Concrete Compression Strength Considering Confining Effect (30-40Mpa의 압축강도를 갖는 콘크리트의 구속효과를 고려한 비선형 재료모델의 적용성 검토)

  • Lee, Heon-Min;Park, Jae-Guen;Hwang, Jae-Min;Yun, Hee-Tack;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.379-382
    • /
    • 2009
  • 횡방향으로 구속된 콘크리트의 응력-변형률 거동은 구속되지 않은 콘크리트와는 다른 거동을 한다. 보통강도 콘크리트에서 구속효과를 고려한 콘크리트 재료모델로는 Mander 모델이 대표적이며 고강도 콘크리트의 구속효과의 경우 여러 연구자들에 의하여 제안된 모델 중 공시체 수준의 실험결과와 잘 일치하는 Sakino-Sun 모델을 사용하였다. 보통강도에서는 Mander모델을 고강도 콘크리트에서는 Sakino-Sun 모델을 사용하였으나 중간 강도인 30-40MPa의 강도에서 Mander 모델과 Sakino-Sun 모델의 적용시 실험결과와 해석결과가 다소 차이를 보이며 또한 두 모델은 적용할 수 있는 최대 또는 최소 콘크리트 압축강도의 한계범위가 명확하지 않다. 따라서 이 연구에서는 30-40MPa의 강도의 횡방향으로 구속된 콘크리트의 비선형 재료모델을 제안하고 실제 30-40MPa의 압축강도를 갖는 콘크리트 공시체의 일축압축시험 결과와의 비교를 통해 그 적용성을 검토하였다.

  • PDF

Disturbance Effects on the Stiffness of Normally Consolidated Clay (정규압밀 점성토의 교란에 따른 강성 변화)

  • Park, Hae-Yong;Shin, Hyun-Young;Oh, Myoung-Hak;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.69-79
    • /
    • 2011
  • Laboratory tests are generally used to determine the input parameters for the selected constitutive models controlling various stress and drainage conditions, but have disadvantages in that the tests are performed on the samples obtained from the bore hole which are prone to be disturbed by various factors such as the tube penetrations, sample preparations and storage. To overcome these disadvantages, it is necessary to understand the effect of disturbance on the stiffness of the sample, especially the normally consolidated clays which are generally considered as soft clays. Therefore, in this study triaxial tests are performed on the normally consolidated kaolinite to evaluate the sample disturbance effects on the stiffness and to determine the field representative input parameters. The stress path results show that the shear and coupling modulus degradation patterns with strain are affected seriously by the disturbance. However, the strengths of the normally consolidated kaolinite are little influenced by the disturbance.

합금강 재질의 대용량 1000MW급 저압터빈 최종단 익(翼) 설계기술 동향

  • Kim, Du-Yeong
    • 열병합발전
    • /
    • s.71
    • /
    • pp.3-9
    • /
    • 2009
  • 최근 국내 발전분야 최고 관심사는 직렬형 축을 가지는 1000MW 이상의 대용량 고효율 증기터빈 개발 및 운영이다. 발전 산업계 요구를 충족시키기 위하여 터빈 설계사들은 새로운 대용량의 저압터빈 실린더 모듈을 개발하고 있는데 개발된 모듈의 특징은 진보된 유체역학과 구조적 분석 기술을 결합하고 기존 합금강 재질 최종단 익에 작용하는 응력한계 길이인 1000mm 이상 길이의 최종단 날개를 개발하는 것이다. 본 논고에서는 Alsthom사에서 새롭게 개발된 최종단 익(翼)의 공역학 및 기계적 특성 설계 개발내용과 실증시험 결과를 소개하고자 한다.

  • PDF

Numerical Study of High-strength Steel CHS X-joints Including Effects of Chord Stresses (주관응력효과를 고려한 고강도강 X형 원형강관접합부의 수치해석 연구)

  • Kim, Seon Hu;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.115-126
    • /
    • 2018
  • Internationally representative steel design standards have forbidden or limited the application of high-strength steels to tubular joints, partly because of concerns about their unique material characteristics such as high yield ratio. Most of design standards stipulate that for steels whose yield strengths exceed 355 or 360 MPa, the strength equations cannot be utilized or strength reduction factor below 1.0 should be multiplied. However, the mechanical background behind these limitations is not clear. Experimental testing of high-strength steel CHS (circular hollow section) X-joints recently conducted by the authors also clearly indicated that the current limitations might be unduly conservative. As a continuing work, extensive, test-validated numerical analyses were made to investigate the behavior of high-strength steel CHS X-joint under axial compression. Three steel grades covering ordinary to very high strength steels were considered in the analysis. Again it was found that the high strength penalty to the joint strength in current standards is too severe and needs to be relaxed. The high-strength steel joints under the effects of chord stress generally showed higher strength than the ordinary steel joints and their strengths were conservatively predicted by current standards. It is also emphasized that current format of the CHS X-joint strength equation does not reflect observed behavior and needs to be recast.

Experimental Evaluation of Fatigue Threshold for SA-508 Reactor Vessel Steel (SA-508 압력용기용 강에 대한 피로균열성장 하한계 조건의 실험 평가)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.160-167
    • /
    • 2012
  • This paper is concerned with a particular fracture mechanics parameter ${\Delta}K_{th}$, known as the 'threshold stress intensity range', or 'fatigue threshold'. This threshold ${\Delta}K_{th}$ constitutes, as it were, a hinge between the notion of crack initiation and the notion of crack growth. It has often been thought that, like the endurance limit, it could be an intrinsic criterion of the material. The study was conducted on a SA-508 pressure vessel steel used in the nuclear power industry. This material exhibits a typical threshold effect in the range of the crack growth rates which were determined; that is, below approximately $da/dN=10^{-6}mm/cycle$, the slope of the da./dN versus ${\Delta}K$ curve is almost vertical. The value of ${\Delta}K_{th}$ was determined at a growth rate of $10^{-7}$ mm/cycle according to the ASTM Standard for threshold testing. The fatigue threshold values are in the range 21 $kg/mm^{3/2}$ to 12 $kg/mm^{3/2}$ depending on the stress ratio effect.

Basic Study on Shear Characteristics of Filled Rock Joint (충전된 절리면의 전단특성에 관한 기초연구)

  • 김용준;이영휘;도성규
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.318-326
    • /
    • 2004
  • In this study, a new direct shear apparatus was developed to investigate the shear characteristics of the rock joints at various conditions. Using the developed apparatus, various experiments on filled rock joints were carried out considering the asperity angle, the normal stress, the type and thickness of filling material and to investigated the basic shear characteristics of filled rock joints were analyzed. According to the experiments performed under the constant normal stress condition by varying the asperity angle, the type and thickness of filling material, it was shown that the behavior and strength of filled rock joint could be defined by the type and thickness of the filling material. The dilation angle of the filled joints was found to be smaller than that of unfilled rock joint, and thereby, the effect of roughness was also reduced due to the filling material. And critical thickness ratio varied according to stress level and roughness as well as the type of filing materials.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.