• Title/Summary/Keyword: 학원관리

Search Result 634, Processing Time 0.034 seconds

Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer (G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리)

  • Kim, Min-Seong;Koo, Tae-Young;Kim, Ji-Hyoung;Jung, Sueng-Pil;Kim, Bu-Yo;Kwon, Byung Hyuk;Lee, Kwangjae;Kang, Myeonghun;Yang, Jiwhi;Lee, ChulKyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • Quality control methods for the first G-band vapor radiometer (GVR) mounted on a weather aircraft in Korea were developed using the GVR Precipitable Water Vapor (PWV). The aircraft attitude information (degree of pitch and roll) was applied to quality control to select the shortest vertical path of the GVR beam. In addition, quality control was applied to remove a GVR PWV ≥20 mm. It was found that the difference between the warm load average power and sky load average power converged to near 0 when the GVR PWV increased to 20 mm or higher. This could be due to the high brightness temperature of the substratus and mesoclouds, which was confirmed by the Communication, Ocean and Meteorological Satellite (COMS) data (cloud type, cloud top height, and cloud amount), cloud combination probe (CCP), and precipitation imaging probe (PIP). The GVR PWV before and after the application of quality control on a cloudy day was quantitatively compared with that of a local data assimilation and prediction system (LDAPS). The Root Mean Square Difference (RMSD) decreased from 2.9 to 1.8 mm and the RMSD with Korea Local Analysis and Precipitation System (KLAPS) decreased from 5.4 to 4.3 mm, showing improved accuracy. In addition, the quality control effectiveness of GVR PWV suggested in this study was verified through comparison with the COMS PWV by using the GVR PWV applied with quality control and the dropsonde PWV.

On-Farm Study of the System of Rice Intensification (SRI) of Rainfed Lowland in Southern Cambodia (캄보디아 남부 천수답지역의 벼 집약관리재배 시스템(SRI)에 대한 현장 연구)

  • Lee, Yun-Ho;Seo, Myung-Chul;Cho, Jung-Il;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Sang, Wan-Gyu
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.285-291
    • /
    • 2018
  • The System of Rice Intensification (SRI) has been spread very quickly in southern Cambodia. To understand the motivation of farmers in adapting SRI, and its benefits, we conducted an on-farm study at Popel commune, Tramkak district, Takeo province in southern Cambodia, during the 2012 and 2013 wet season. We noticed a significant difference between SRI and conventional farmers' practices (FP) in rainfed lowland rice ecosystem. Despite of low nitrogen input, without chemical fertilizers, high grain yield was achieved in SRI 1 (6.0 t ha) and SRI2-Bottom ($7.2t\;ha^{-1}$) in 2013. SRI 1 and SRI 2 of panicle and number of panicle were high than SR 3, FP 2, and FP 3 due to early transplant. Relationships between total number of spikelet and plant nitrogen were ($r^2=0.95$) highly positive at harvest. SRI fields were, most of them achieving highly superior yield and number of panicle compared to their FP fields. The results indicated that SRI practices of planting younger seedling, with organic material and topography of paddy, lead to increased grain yield.