Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.281-284
/
2000
시계열 예측에 있어서 과거의 측정치 보다 최근의 측정치가 미래의 측정치 예측에 중요한 영향을 미친다. 시계열 예측에 있어서 최근의 측정치와 과거의 측정치가 미래의 값을 예측하는 인자로서 차별화 되어 학습해야 할 것이다. 기존의 시계열에 대한 신경망 접근에서는 최근의 측정치에 대한 학습 패턴과 과거의 측정치에 대한 학습 패턴을 동일하게 학습하였다. 이 논문에서는 과거의 학습패턴과 최근의 학습 패턴을 학습 횟수 면에서 차별화 하였다. 이러한 학습을 이 논문에서는 차별학습이라 한다. 차별학습에서는 주어진 학습 패턴을 시간 순으로 나열하고 일정 개수로 분할한다. 시간의 역순에 의해 등차 또는 등비의 형태로 학습 횟수를 설정한다. 각 학습 패턴의 분말집단을 시간의 역순으로 일정 횟수를 감소시켜 학습 횟수를 설정하는 등차차별학습과 일정 비율로 감소시켜 학습횟수를 설정하는 등비차별학습을 소개한다. 기존의 신경망 접근 방법과 이 논문에서 제안한 신경망 접근방법을 비교하기 위해 Mackay-Galss 공식에 의해 인공적으로 생성된 시계열 데이터를 예로 사용하였다.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2003.05a
/
pp.148-153
/
2003
본 논문에서는 심근허혈 질환을 효율적으로 분류하기 위한 신경망을 설계하였다. European ST-T DB의 심전도로부터 ST 분절의 특징을 추출하여 입력노드를 결정하고 10개의 학습률과 학습 횟수에 따른 신경망의 MES를 계산하였다. 실험 결과 특징 파라미터의 조합을 ST0, ST80, Slope, Area로 하였을 때 MSE를 가장 작았다. 이러한 특징 파라미터를 이용하여 신경망의 입력으로 학습시킨 경우 학습 횟수의 증가에 따라 MSE가 지수합수적으로 감소하였으며 1,000회 이상에서는 둔하게 감소하였다. 또한 학습 횟수가 5,000회, 10,000회, 15,000회 각각의 경우에 대하여 학습률을 0.01부터 0.7까지 증가시키면서 MSE를 계산한 결과 학습 횟수가 증가할수록 MSE를 최소로 하는 최적학습률이 0.1부터 0.04까지 감소하였다.
This study focuses the relationships of job performance abilities with learner satisfaction and learning performance for NCS-based courses in colleges from instructors' perspectives. The results of this study show that the satisfaction of learners for NCS-based courses is statistically higher when learners are evaluated 3 times or more rather than twice or less. And also it reports that when 3 or more different evaluation methods are applied per evaluation of job performance ability, learner satisfaction is statistically higher. On the other hand, the performance of learners is turned out to be better with both evaluations of 3 times or more, and 3 or more different evaluation methods per job performance ability. However those results are not statistically meaningful. It concludes that from a view of process-based formative evaluation, evaluating job performance ability itself should be considered as an activity for improving teaching and learning in higher vocational education of colleges.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.41
no.3
/
pp.17-24
/
2004
We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.
The purpose of this study is to make up for missing of weather informations from ASOS and AWS using artificial neural networks. We collected temperature, relative humidity and wind velocity for August during 5-yr (2011-2015) and sample designed artificial neural networks, assuming the Seoul weather station was missing. The result of sensitivity study on number of epoch shows that early stopping appeared at 2,000 epochs. Correlation between observation and prediction was higher than 0.6, especially temperature and humidity was higher than 0.9, 0.8 respectively. RMSE decreased gradually and training time increased exponentially with respect to increase of number of epochs. The predictability at 40 epoch was more than 80% effect on of improved results by the time the early stopping. It is expected to make it possible to use more detailed weather information via the rapid missing complemented by quick learning time within 2 seconds.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.51-54
/
2024
본 논문에서는 온 디바이스 국방 AI를 위한 효율적인 학습 방법을 제안한다. 제안하는 방법은 모델 전체를 재학습하는 대신 필요한 부분만 세밀하게 조정하여 계산 비용과 시간을 대폭 줄이는 PEFT 기법의 LoRa를 적용하였다. LoRa는 기존의 신경망 가중치를 직접 수정하지 않고 추가적인 낮은 랭크의 매트릭스를 학습하는 방식으로 기존 모델의 구조를 크게 변경하지 않으면서도, 효율적으로 새로운 작업에 적응할 수 있다. 또한 학습 파라미터 및 연산 입출력에 데이터에 대하여 32비트의 부동소수점(FP32) 대신 부동소수점(FP16, FP8) 또는 정수형(INT8)을 활용하는 경량화 기법인 양자화도 적용하였다. 적용 결과 학습시 요구되는 GPU의 사용량이 32GB에서 5.7GB로 82.19% 감소함을 확인하였다. 동일한 조건에서 동일한 데이터로 모델의 성능을 평가한 결과 동일 학습 횟수에선 LoRa와 양자화가 적용된 모델의 오류가 기본 모델보다 53.34% 증가함을 확인하였다. 모델 성능의 감소를 줄이기 위해서는 학습 횟수를 더 증가시킨 결과 오류 증가율이 29.29%로 동일 학습 횟수보다 더 줄어듬을 확인하였다.
In this study, we study the effects of note-taking skills on students' academic performance, satisfaction, and concentration, and immersiveness when students are taking online classes. The Cornell note format was used for the note-taking skills. The survey result shows that note-taking skills in online class increase students' diligence, participation, and concentration. We find a strong positive correlation between the number of Cornell note submission and academic performance, and we show that the association between two is a statistically significant by using simple/multiple regression analysis. The multiple regression result shows that one unit increase in the Cornell note submission is associated with the increase in 0.253 midterm score on average. In addition, one unit increase in the Cornell note submission is associated with increase in 0.287 final exam score on average. Further, we conduct bootstrapping regression as a robustness test and show that the results are consistent with the simple/multiple regression results. These analyses show that Cornell note taking skills in online classes can be beneficial for students to improve the quality of their learning.
Kim, Yeon-Gyu;Park, Ho-Jun;Lee, Sang-Geol;Cha, Eui-Young
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1285-1288
/
2015
본 논문에서는 영상인식을 위한 딥 러닝에서 사용되는 매개변수 최적화 방법을 제안한다. 학습 성능에 영향을 미치는 매개변수 중 이미지 배치 사이즈 값, 초기 학습율, 최대 학습 반복 횟수에 대해 상호간의 관계를 분석하고 성능을 개선시키기 위해 값을 최적화하는 방법을 연구한다. 제안된 방법을 통한 개선 정도를 분석하기 위해 매개변수의 변화에 따른 학습 소요 시간, 정확도 향상 추이, 메모리 사용량의 변화를 측정한다. 측정된 학습 소요 시간, 정확도 향상 추이, 메모리 사용량의 변화를 분석한 결과 배치 사이즈와 초기 학습 율은 같은 비율로 반비례하게 값을 적용할 때가 이상적 이였으며 서로 다른 환경에서 각각의 학습 소요시간을 측정하는 것으로 배치 사이즈 값과 초기 학습 율에 따른 최적의 최대 학습 반복 횟수를 획득할 수 있었다.
Journal of The Korean Association of Information Education
/
v.23
no.5
/
pp.481-489
/
2019
In order to explore the learning attitude of the learners and the effects of conscious learning attitudes on academic achievement in On-line education system of open high school, we analyze the log data of 2,965 first graders who studied English, Math, Integrated Society and Integrated Science during the first semester of 2018. This study examines the learning status according to the learner's background variables, and analyzes the number of lessons per hour, learning progress rate, learning period, learning start month, and formative evaluation results for each class. In addition, to verify the effects of conscious learning attitude on academic achievement, skewness and kurtosis are calculated by using learning frequency values for each class. As a result, in almost all fields, the average number of lessons per class, study duration, progress rate, and grades, women are higher than men. In addition, the older ones are, the higher they are and the Seoul area is higher than the other area. The average learning period is 2~3 months, and the longer the learning period, the higher the formative evaluation score. Lastly, even though the number of learning is lower than that of learners who concentrate on a certain period of time, the formation scores of learners who learn consciously are higher.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.240-249
/
2005
사용자 맞춤 서비스를 위하여 온라인상에서 사용자의 관심 분야를 파악하고자 하는 경우에는 적은 수의 훈련 예제로 효율적인 학습이 가능한 능동적 학습이 적절하다. 능동적 학습을 효과적으로 적용하기 위하여 사용자에게 문의할 가치가 높은 예제를 선정하는 것도 중요하지만, 사용자 편의를 위해서는 문의 횟수를 가능한 최소화하여야 한다. 문의 횟수를 줄이면서도 많은 수의 훈련 예제를 획득하기 위해서는 복수의 문의 예제들을 사용자에게 한꺼번에 제시하고 그 관심 여부를 표한하게 하는 것이 효과적이다. 본 논문에서는 능동적 학습 적용 시 사용자에게 문의할 가치가 높은 복수 문의 예제들을 효과적으로 선정하기 위하여 가중치 반영 군집화를 적용하는 방안을 제안한다. 본 제안 방안은 먼저 각 예제의 문의 예제로서의 가치를 파악하고 이를 가중치로 삼아 군집화를 수행하여 상대적으로 유사한 예제들의 집합을 구성한다. 이어서 생성된 각각의 군집에서 가장 보편적인 예제를 문의 예제로 선정하면 선정된 각각의 문의 예지는 문의할 가치가 높으면서 함께 문의하게 될 예제들은 서로 충분히 달라 학습에 보다 유용하게 사용할 수 있는 훈련 예제들을 얻을 수 있다. 문서 분류 문제를 대상으로 본 제안 방안을 실험한 결과, 단순히 문의 가치가 높은 복수의 예제들을 함께 문의할 예제들로 선정하는 방안에 비해 학습 성능이 뛰어났으며, 한 번에 문의하는 예제 수를 증가시키더라도 분류기의 성능 저하가 적음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.