• 제목/요약/키워드: 학습 한국어

검색결과 1,345건 처리시간 0.022초

KTAG99: 새로운 환경에 쉽게 적응하는 한국어 품사 태깅 시스템 (KTAG99: Highly-Adaptable Koran POS tagging System to New Environments)

  • 김재훈;선충녕;홍상욱;이성욱;서정연;조정미
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
    • /
    • pp.99-105
    • /
    • 1999
  • 한국어 정보처리를 위한 언어정보는 응용 분야에 따라 큰 차이를 보인다. 특히 말뭉치를 이용한 연구에서는 언어정보가 달라질 때마다 시스템을 새로 구성해야 하는 어려움이 있다. 본 논문에서는 이와 같은 어려움을 다소 완화시키기 위해 새로운 환경에 잘 적응할 수 있는 한국어 품사 태깅 시스템에 관해서 논한다. 본 논문에서는 이 시스템을 KTAG99라고 칭한다. KTAG99는 크게 실행부와 학습부로 구성되었다. 한국어 품사 태깅을 위한 실행부는 고유명사 추정기, 한국어 형태소 분석기, 통계기반 품사 태거, 품사 태깅 오류교정기로 구성되었으며, 실행부에서 필요한 언어정보를 추출하는 학습부는 고유명사 추정규칙 추출기, 형태소 배열규칙 추출기, 사전 추출기, 확률정보 추정기, 품사 태깅 오류수정 규칙 추정기로 구성되었다. KTAG99에서 필요한 언어정보의 대부분은 학습 말뭉치로부터 추출되거나 추정되기 때문에 아주 짧은 시간 내에 새로운 환경에 적응할 수 있다.

  • PDF

한국어 피동·사동 교육용 시각 콘텐츠에 관한 연구 (A Study on Visual Contents for Korean Passive Verbs and Causative Verbs Education)

  • 손주희;김은정;안희은
    • 한국콘텐츠학회논문지
    • /
    • 제22권1호
    • /
    • pp.348-358
    • /
    • 2022
  • 본 연구는 외국인을 위한 한국어 교육에서 피동·사동의 효과적인 교육을 위한 시각적 콘텐츠를 제작하는 것을 목적으로 한다. 피동·사동은 중급 단계의 학습자들에게 꼭 가르쳐야 하는 내용이다. 그러나 그 실현 양상이 복잡하고, 접미사에 의한 피동·사동은 결합 관계를 설명할 수 있는 규칙이 없어 학습자와 한국어 교사 모두에게 어려운 항목으로 인정되고 있다. 이 글에서는 학습 효과를 향상시킬 수 있는 비언어적 정보 활용에 관해 고찰하였다. 언어 교육에서 언어적 비언어적 정보를 함께 제공하면 학습자의 의사소통 능력 향상의 효과를 기대할 수 있다. 특히 시각적 콘텐츠는 기억 증진, 재생, 전이 등에 긍정적인 영향을 줄 수 있는 비언어적 정보이다. 이에 본 연구에서는 시각적 자료로서의 그림카드를 기획하고 제작하고자 하였다. 한국어 피동·사동의 올바른 교육에 초점을 두고 제작한 그림카드는 접미사에 의한 한국어 피동·사동의 교수-학습을 효율적이고 유의미하게 해 줄 것이다.

기계독해 데이터셋의 교차 평가 및 블라인드 평가를 통한 한국어 기계독해의 일반화 성능 평가 (Evaluating Korean Machine Reading Comprehension Generalization Performance using Cross and Blind Dataset Assessment)

  • 임준호;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.213-218
    • /
    • 2019
  • 기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.

  • PDF

기계학습 기법을 이용한 한국어 구문분석 (Korean Parsing using Machine Learning Techniques)

  • 이용훈;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.285-288
    • /
    • 2008
  • 최근의 구문분석 연구는 컴퓨터 성능 향상과 사용 가능한 대량의 구문분석 말뭉치 증가, 견고한 기계학습 기법 개발 등에 힘입어 통계적인 모델 연구가 꾸준히 증가하고 있다. 본 논문에서는 기존에 개발된 다양한 기계학습 기법 중 ME(Maximum Entropy) 모델과 SVM(Support vector machine) 모델을 이용한 한국어 구문분석 방법을 제안한다. 국어정보베이스(KIBS) 구문분석 말뭉치를 가지고 실험한 결과 SVM 모델을 이용한 한국어 구문분석기가 기존의 확률 기반 통계적 한국어 구문분석기의 성능보다도 최대 1.84% 높은 87.46%의 의존관계 결정 정확률을 보였다. 추후 언어지식을 반영한 다양한 자질들을 이용할 경우 성능 향상이 기대된다.

  • PDF

IG back-off 평탄화와 확률 기반 모델을 이용한 한국어 및 영어 단위화 (Korean and English Text Chunking Using IG Back-off Smoothing and Probabilistic Model)

  • 이은지;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2002년도 제14회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.118-123
    • /
    • 2002
  • 많은 자연언어처리 분야에서 문장의 단위화는 기본적인 처리 단계로서 중요한 위치를 차지하고 있다. 한국어 단위화에 대한 기존 연구들은 규칙 기반 방법이나 기계 학습 기법을 이용한 것이 대부분이었다. 본 논문에서는 통계 기반 방식의 일환으로 순수 확률기반 모델을 이용한 단위화 방법을 제시한다. 확률 기반 모델은 처리하고자 하는 해당 언어에 대한 깊은 지식 없이도 적용 가능하다는 장점을 가지므로 다양한 언어의 단위화에 대한 기본 모델로서 이용될 수 있다. 또한 자료 부족 문제를 해결하기 위해 메모리 기반 학습 시에 사용하는 IG back-off 평탄화 방식을 시스템에 적용하였다. 본 논문의 모텔을 적용한 단위화 시스템을 이용하여 한국어와 영어에 대해 실험한 결과 비교적 작은 규모의 말뭉치를 학습하였음에도 불구하고 각각 90.0%, 90.0%의 정확도를 보였다.

  • PDF

사전학습 언어모델과 GCN을 이용한 한국어 관계 추출 (Korean Relation Extraction Using Pre-Trained Language Model and GCN)

  • 이제승;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.379-384
    • /
    • 2022
  • 관계 추출은 두 개체 간의 관계를 식별하는 작업이며, 비정형 텍스트를 구조화시키는 역할을 하는 작업 중 하나이다. 현재 관계 추출에서 다양한 모델에 대한 연구들이 진행되고 있지만, 한국어 관계 추출 모델에 대한 연구는 영어에 비해 부족하다. 따라서 본 논문에서는 NE(Named Entity)태그 정보가 반영된 TEM(Typed Entity Marker)과 의존 구문 그래프를 이용한 한국어 관계 추출 모델을 제안한다. 모델의 학습과 평가 말뭉치는 KLUE에서 제공하는 관계 추출 학습 말뭉치를 사용하였다. 실험 결과 제안 모델이 68.57%의 F1 점수로 실험 모델 중 가장 높은 성능을 보여 NE태그와 구문 정보가 관계 추출 성능을 향상시킬 수 있음을 보였다.

  • PDF

한국어 상호참조해결을 위한 BERT 기반 데이터 증강 기법 (BERT-based Data Augmentation Techniques for Korean Coreference Resolution)

  • 김기훈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.249-253
    • /
    • 2020
  • 상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.

  • PDF

BART를 이용한 한국어 자연어처리: 개체명 인식, 감성분석, 의미역 결정 (BART for Korean Natural Language Processing: Named Entity Recognition, Sentiment Analysis, Semantic role labelling)

  • 홍승연;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.172-175
    • /
    • 2020
  • 최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.

  • PDF

한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구 (On Word Embedding Models and Parameters Optimized for Korean)

  • 최상혁;설진석;이상구
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF

비자동회귀 다중 디코더 기반 한국어 형태소 분석 (Non-autoregressive Multi Decoders for Korean Morphological Analysis)

  • 조성민;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.418-423
    • /
    • 2022
  • 한국어 형태소 분석은 자연어 처리의 기초가 되는 태스크이므로 빠르게 결과를 출력해야 한다. 기존연구는 자동회귀 모델을 한국어 형태소 분석에 적용하여 좋은 성능을 기록하였다. 하지만 자동회귀 모델은 느리다는 단점이 있고, 이 문제를 극복하기 위해 비자동회귀 모델을 사용할 수 있다. 비자동회귀 모델을 한국어 형태소 분석에 적용하면 조화롭지 않은 시퀀스 문제와 토큰 반복 문제가 발생한다. 본 논문에서는 두 문제를 해결하기 위하여 다중 디코더 기반의 한국어 형태소 분석을 제안한다. 조화롭지 않은 시퀀스는 다중 디코더를 적용함으로써, 토큰 반복 문제는 두 개의 디코더에 서로 어텐션을 적용하여 문제를 완화할 수 있다. 본 논문에서 제안한 모델은 세종 형태소 분석 말뭉치를 대상으로 좋은 성능을 확보하면서 빠르게 결과를 생성할 수 있음을 실험적으로 보였다.

  • PDF