Kim, Seoung-Suk;Jun, Beung-Suk;Kim, Ju-Sik;Ryu, Jeoung-Woong
Proceedings of the KIEE Conference
/
2002.07d
/
pp.2846-2849
/
2002
본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.482-486
/
2008
본 논문에서는 하드 디스크 드라이브(Hard Disk Drive, HDD) 생산 공정 과정에서 발생할 수 있는 불량 HDD의 결함 분포에 대해서 패턴을 자동으로 분류해주는 기법을 제시한다. 이를 위해서 표준 패턴 클래스로 분류되어 있는 불량 HDD의 각 클래스의 확률 모델을 GMM(Gaussian Mixture Model)로 가정한다. 실험은 전문가에 의해 분류된 실제 HDD 결함 분포로부터 5가지의 특징 값들을 추출한 후, 결함 분포의 클래스를 표현할 수 있는 GMM의 파라미터(Parameter)를 학습한다. 각 모델의 파라미터를 추정하기 위해 EM(Expectation Maximization) 알고리즘을 사용한다. 학습된 GMM의 분류 테스트는 학습에 사용되지 않은 HDD 결함 분포에서 5가지의 특징 값을 입력 값으로 추정된 모델들의 파라미터 값에 의해 사후 확률을 구한다. 계산된 확률 값 중 가장 큰 값을 갖는 모델의 클래스를 표준 패턴 클래스로 분류한다. 그 결과 제시된 GMM을 이용한 HDD의 패턴 분류의 결과 96.1%의 정답률을 보여준다.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.5-11
/
2008
한국어 띄어쓰기에서 통계적 모델을 사용한 기존의 연구들은 최대우도추정(Maximum Likelihood Estimation)에 기반하고 있다. 그러나 최대우도추정은 자료부족 시 부정확한 결과를 주는 단점이 있다. 본 연구는 이에 대한 대안으로 사용자 입력을 고려하는 베이지언 파라미터 추정(Bayesian parameter estimation)을 제안한다. 기존 연구가 사용자 입력을 교정 대상으로만 간주한 것에 비해, 제안 방법은 사용자 입력을 교정 대상이면서 동시에 학습의 대상으로 해석한다. 제안하는 방법에서 사용자 입력은 학습 말뭉치의 자료부족에서 유발되는 부정확한 파라미터 추정(parameter estimation)을 방지하는 역할을 수행하고, 학습 말뭉치는 사용자 입력의 불확실성을 보완하는 역할을 수행한다. 실험을 통해 문어체 말뭉치, 통신환경 구어체 말뭉치, 웹 게시판 등 다양한 종류의 말뭉치와 다양한 통계적 모델에 대해 제안 방법이 효과적임을 알 수 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.6
/
pp.1149-1154
/
2017
To obtain good recognition performance of speech recognition system under background noise, it is very important to select appropriate feature parameters of speech. The feature parameter used in this paper is Mel frequency cepstral coefficient (MFCC) with the human auditory characteristics applied to Wiener filter method. That is, the feature parameter proposed in this paper is a new method to extract the parameter of clean speech signal after removing background noise. The proposed method implements the speaker recognition by inputting the proposed modified MFCC feature parameter into a multi-layer perceptron network. In this experiments, the speaker independent recognition experiments were performed using the MFCC feature parameter of the 14th order. The average recognition rates of the speaker independent in the case of the noisy speech added white noise are 94.48%, which is an effective result. Comparing the proposed method with the existing methods, the performance of the proposed speaker recognition is improved by using the modified MFCC feature parameter.
Multilayer perceptrons(MLPs) or feed-forward neural networks are widely applied to many areas based on their function approximation capabilities. When implementing MLPs for application problems, we should determine various parameters and training methods. In this paper, we discuss the design of MLPs especially for pattern classification problems. This discussion includes how to decide the number of nodes in each layer, how to initialize the weights of MLPs, how to train MLPs among various error functions, the imbalanced data problems, and deep architecture.
Lee Donghun;Kang Mi-young;Hwang Myeong-jin;Hwon Hyuk-chul
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.445-447
/
2005
본 논문은 규칙 기반 방법과 통계 기반 방법을 동시에 사용함으로써 두 가지 방법의 장단점을 상호 보완한다. 한 문장에 대한 최적의 품사열은 HMM을 기반으로 Viterbi Algorithm을 사용하여 선택한다. 이때 파라미터 값은 규칙에 의한 가중치 값과 통계 정보를 사용한다. 최소한의 일반규칙을 사용하여 구축한 규칙의 적용에 따라 가중치 값을 구하며 규칙을 적용받지 못하는 경우는 비감독학습으로 추출한 통계정보에 기반을 둔 가중치 값을 이용하여 파라미터 값을 구한다. 이러한 기본 모델을 여러 회 반복하여 학습함으로써 최적의 통계기반 가중치를 구한다. 규칙과 비감독 학습으로 추출한 통계정보를 이용한 본 품사 태깅 시스템의 어절 기반 정확도는 $97.78\%$이다.
Kim, Taeha;Yang, Seongyeop;Kang, Byeongkeun;Lee, Yeejin
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.10-13
/
2021
본 논문에서는 과다 노출된 영상을 영상 간 변환(Image-to-Image Translation)을 위해 설계된 적대적 생성 신경망(Generative Adversarial Network)을 활용하여 복원하는 연구를 수행한다. 과다 노출 복원을 위한 기존의 연구에서 과다 노출 영역 판별, 밝기 회복, 색상 보정 과정을 거치는데, 영상 내 과다 노출 영역을 판별하는 과정에서 임의로 결정하는 파라미터에 의해 복원된 영상 결과가 달라지는 한계점을 극복하기 위해 종단간(End-to-End) 신경망을 학습시켜 과다 노출 영역을 별도의 파라미터 선택과 분할된 과정 없이 한 번에 복원하는 방법을 제안한다. 영상 간 변환 신경망 학습에 필요한 과다 노출 여부로 도메인이 분할된 데이터셋은 게임 소프트웨어를 활용하여 만들어 사용하였다. 본 연구에서는 신경망이 생성한 영상이 실제로 과다 노출 영역을 탐지하여 복원하는 것을 확인하였다. 그리고 과다 노출 영역을 탐지하여 복원하는 과정을 학습 단계별로 확인함으로써 신경망이 실제로 과다 노출 복원 과정을 학습함을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.345-348
/
2002
음성인식 기술은 크게 음성인식과 화자인식 기술의 두 가지로 분류된다. 현재는 음성인식 기술이 널리 연구되고 있지만 점차 화자인식 기술의 중요성이 대두되고 있다. 본 논문에서는 화자인식 기술의 한 가지 분류로 임의 화자를 식별하기 위한 화자식별 기술을 연구 대상으로 하고 있으며, 신경회로망을 이용한 화자식별 시스템의 특징 추출 방법을 제시하고 그에 따른 성능을 비교하고 있다. 식별 단계에서 26명의 78개의 음성 샘플을 신경회로망의 역전파 알고리듬을 이용하여 학습하고, 테스트용으로 한 화자의 음성샘플이 사용되어 식별된다. 신경회로망의 입력 변수는 특징 파라미터로 선형예측계수, Mel-주파수 켑스트럼계수와 웨이블릿을 이용한 켑스트럼 계수를 사용하였다. 그 결과로써 화자식별 시스템의 신경회로망 모델2의 입력으로 혼합된 특징 파라미터를 사용한 경우가 다른 파라미터들을 사용한 경우와 비교하여 8.46~21.53%의 차를 가지고 가장 좋은 성능을 나타내었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.05a
/
pp.96-101
/
1998
많은 분야에서 널리 사용되고 있는 PID 제어기의 형태는 오차를 갖는 폐루프 시스템으로 구성되며, PID 제어기는 비례, 적분, 미분 제어기로 나누어진다. PID 제어기의 형태가 여러 가지로 제안되고 있지만 보다 중요한 것은 PID 제어기의 파라미터들을 어떻게 적절히 정하느냐 하는 파라미터 조정 문제이다. 실제로 산업 현장에 설치되어 있는 PID 제어기는 대부분 숙련된 기술자에 의해 수동 조작에 의한 시행 착오(trial and error) 법으로 동조되고 있다. 이 경우는 많은 노력과 시간이 소비되고, 외란(disturbance)이 첨가될 경우 적절히 동조된다는 보장도 없다. 본 논문에서는 이러한 문제를 해결하고자 신경회로망을 이용하여 PID 제어기의 파라미터를 동조하는 제어 방법을 제안하였다. 단일 뉴런으로 구성하여 구조가 간단하고, 학습에 의한 성능 개선이 가능하다. 오차 역전파(Error Back-Propagation) 알고리즘에 의하여 PID 파라미터가 되는 가중치를 자동 동조하는 방법이다. 제안한 방식의 유용성을 보이기 위해 DC 서보 모터와 비선형 시스템인 단일 관절 매니퓰레이터를 대상으로 시뮬레이션을 하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.517-518
/
2023
본 논문에서는 인공지능 신경망의 하이퍼 파라미터들이 그래프 신경망 모델의 성능에 미치는 영향을 알아보기 위하여 대규모 그래프 데이터를 기반으로 이진 분류 문제를 예측하는 그래프 합성곱 신경망 모델(Graph Convolution Network Model)을 구현하고 모델의 다양한 하이퍼 파라미터 중 손실함수와 활성화 함수를 여러 가지 조합으로 적용하며 모델 학습과 예측 실험을 시행하였다. 실험 결과, 활성화 함수보다는 손실함수의 선택이 모델의 예측 성능에 좀 더 큰 영향을 미치는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.