• Title/Summary/Keyword: 학습 지도 방식

Search Result 1,181, Processing Time 0.027 seconds

The Influence of Trust in Physical Education Teachers and Immersion Experience in Physical Education Classes on Attitude and Satisfaction During Physical Education Classes (중학생의 체육교사에 대한 신뢰와 체육수업 몰입 경험이 체육교과 태도 및 수업만족에 미치는 영향)

  • Park, Yu-Chan
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.6
    • /
    • pp.187-202
    • /
    • 2019
  • The main goal of this study is to investigate influence of trust in physical education (PE) teachers and immersion experience in PE classes on attitude and satisfaction during PE classes. Total 863 middle school students in Gwang-ju metropolitan area were recruited by utilizing a convenience sampling method. All data were analyzed by using SPSS statistic program ver. 25.0 (frequency analysis, exploratory factor analysis, reliability analysis, correlation analysis, multiple regression analysis). Alpha was set at 0.05. The results of this study is summarized as in the following. First, all sub-factors of trust in the PE teachers partially positively or negatively influence sub-factors of attitude during PE classes. Second, sub-factors of satisfaction during PE classes were partially positively affected to trust in the PE teachers. Third, Attitude during PE Classes were found to have partial positive influence on immersion experience in PE classes. Fourth, sub-factors of immersion experience in PE classes have partial positive effect on the sub-factors of satisfaction during PE classes. Thus, in order to the positive attitude and greater satisfaction during PE classes, it is important to establish the trust of PE teachers through maintaining interaction with students, constructing better systemic class, and creating the class conditions based on considering students' ability. In addition, in order to enhance immersion experiences of students during PE classes, it is necessary to set up learning goals and tasks based on ability of students, to study various teaching method, and to make only focusing on the performance based PE classes without grading.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

Simulation and Experimental Studies of Super Resolution Convolutional Neural Network Algorithm in Ultrasound Image (초음파 영상에서의 초고분해능 합성곱 신경망 알고리즘의 시뮬레이션 및 실험 연구)

  • Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.693-699
    • /
    • 2023
  • Ultrasound is widely used in the medical field for non-destructive and non-invasive disease diagnosis. In order to improve the disease diagnosis accuracy of diagnostic medical images, improving spatial resolution is a very important factor. In this study, we aim to model the super resolution convolutional neural network (SRCNN) algorithm in ultrasound images and analyze its applicability in the medical diagnostic field. The study was conducted as an experimental study using Field II simulation and open source clinical liver hemangioma ultrasound imaging. The proposed SRCNN algorithm was modeled so that end-to-end learning can be applied from low resolution (LR) to high resolution. As a result of the simulation, we confirmed that the full width at half maximum in the phantom image using a Field II program was improved by 41.01% compared to LR when SRCNN was used. In addition, the peak to signal to noise ratio (PSNR) and structural similarity index (SSIM) evaluation results showed that SRCNN had the excellent value in both simulated and real liver hemangioma ultrasound images. In conclusion, the applicability of SRCNN to ultrasound images has been proven, and we expected that proposed algorithm can be used in various diagnostic medical fields.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Evaluation of Usefulness of Assertive Devices to Improve the Accuracy in Skull lateral X-ray Projection (두개골 측방향 X-선 촬영에서 정확도 향상을 위한 촬영 보조 기구의 유용성 평가)

  • Bo-Seok Chang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2024
  • In X-ray projection, Unskilled radiologists become skilled through fail exam. This causes the patient to be exposed to unnecessary radiation. In this study, pre-position unskilled radiologic technologist presented ways to improve clinical proficiency. presented a skull lateral x-ray projection practice method using visual, spatial, and assistive devices. In addition, the accuracy and usefulness of the use of assistive devices were evaluated. When X-ray images were taken based on learning, the rotational spacing, which indicates image distortion, was 7.85 ± 1.45 mm and the tiliting spacing was 4.84 ± 0.5 mm. When practicing using visual aids, the rotational spacing is 4.4 ± 0.76 mm and the inclination spacing is 3.01 ± 0.87 mm. using a spatial compensation device, the rotational spacing is 5.2 ± 0.69 mm and the tiliting spacing is 3.33 ± 0.61 mm. Skull lateral X-ray Image distortion caused by empirical photography practice decreased by 5.4%, but image distortion caused by tilting increased by 1.2%. When practicing using a visual assistive devices, the degree of rotational spacing by 40.1% and the tiliting spacing decreased by 30.7% compared to the empirical x-ray exposure practice. When using spatial assistive devices, the rotation interval was reduced by 41.7% and the tilting interval by 23.7% compared to conventional empirical x-ray exposure practice. Therefore, if an unskilled radiologist practices using visual and spatial aids,the accuracy will be improved in skull lateral x-ray projection.

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

An Analysis of Students' Difficulty on Science Stories in Elementary School Science Textbooks - Focusing on 6th Grade Science (초등학교 과학교과서에 기술된 과학이야기에 대한 학생들의 어려움 분석 - 6학년 과학을 중심으로 -)

  • Lim, Younghyun;Shin, Youngjoon
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.525-542
    • /
    • 2014
  • This study was performed to look into the difficulty of students in understanding science stories in 6th grade science textbooks and to analyze those factors. To do this, 6th grader (N=65) were selected from J Elementary School located in Gyeonggi-do Siheung-si as study subjects. 26 science stories in 6th grade science textbooks were classified by field and context (complement of knowledge, science history of scientists, science in life, cutting-edge science technology, environment issues) in which the characteristics were investigated and analyzed. Also, a survey about the difficulty in understanding science stories(26 items) was conducted(65 students) and a semi-structured interview was conducted for students to clarify the meaning of collected data from surveys(4 students). As result of analyzing surveys on science story context in science textbooks and interviews, 4 fields of 'energy,' 'matter,' 'life,' and 'earth' were evenly mentioned. Science in life and complement of science knowledge were mentions most for context and this had relation with the characteristic of science textbooks to provide many opportunities to apply learned knowledge in actual social issues. Reactions of students on science stories were mostly positive that they help studying science, but there was also difficulty in well understanding science stories. Difficulty of understanding context, problems of context suggesting methods, difficulty of science terminology, lack of interest, and etc. were analyzed as factors. Specific causes were mentioned to be description type class, unimportant context, lack of explanation on suggested context, problem of pictures by students.

  • PDF

The Recognition Characteristics of Science Gifted Students on the Earth System based on their Thinking Style (과학 영재 학생들의 사고양식에 따른 지구시스템에 대한 인지 특성)

  • Lee, Hyonyong;Kim, Seung-Hwan
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.12-30
    • /
    • 2009
  • The purpose of this study was to analyze recognition characteristics of science gifted students on the earth system based on their thinking style. The subjects were 24 science gifted students at the Science Institute for Gifted Students of a university located in metropolitan city in Korea. The students' thinking styles were firstly examined on the basis of the Sternberg's theory of mental self-government. And then, the students were divided into two groups: Type I group(legislative, judicial, global, liberal) and Type II group(executive, local, conservative) based on Sternberg's theory. Data was collected from three different type of questionnaires(A, B, C types), interview, word association method, drawing analyses, concept map, hidden dimension inventory, and in-depth interviews. The findings of analysis indicated that their thinking styles were characterized by 'Legislative', 'Executive', 'Anarchic', 'Global', 'External', 'Liberal' styles. Their preference were conducting new projects and using creative problem solving processes. The results of students' recognition characteristics on earth system were as follows: First, though the two groups' quantitative value on 'System Understanding' was very similar, there were considerable distinctions in details. Second, 'Understanding the Relationship in the System' was closely connected to thinking styles. Type I group was more advantageous with multiple, dynamic, and recursive approach. Third, in the relation to 'System Generalization' both of the groups had similar simple interpretational ability of the system, but Type I group was better on generalization when 'hidden dimension inventory' factor was added. On the system prediction factor, however, students' ability was weak regardless of the type. Consequently, more specific development strategies on various objects are needed for the development and application of the system learning program. Furthermore, it is expected that this study could be practically and effectively used on various fields related to system recognition.

  • PDF