• 제목/요약/키워드: 학습 용이성

검색결과 325건 처리시간 0.022초

인삼 및 인삼 사포닌이 쥐의 건망증 및 신경세포배양에 미치는 영향 (Effects of Ginseng and Its Saponins on Experimental Amnesia in Mice and on Cell Cultures of Neurons)

  • Saito Hiroshi;Nishiyama Nobuyoshi;Iwai Akihiko;Kawajiri Shinichi;Himi Toshiyuki;Sakai Toshimi;Fukunaka Chizu
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1988년도 학술대회지
    • /
    • pp.92-98
    • /
    • 1988
  • 본 연구는 중앙대서전에 인삼의 주 효과중 건망증 방지작용이라고 수록되어 있는 것을 확인하기 위하여 행하여졌다. Step through 시험에서 $GRb_1$$GRg_1$은 기억력 획득을 용이하게 하였으며 전기충격 쇼크에 의해 야기되는 기억상실 효과를 억제하였다. 게대가 $Rg_1$은 에타놀 야기 기억재생 저해작용을 방지하였다. Stepdown test에 있어서 $Rb_1,\;Rb_2,\;Rg_1$은 전기충격쇼크에 의해 야기되는 기억보지 저해효과를 방지하였다. 또한 $Rg_1$은 에타놀에 의해 야기되는 기억재생 저해효과를 방지하였으며 단기적 기억력 획득을 용이케 하였다. Shuttle box와 lever press 시험에서도 $Rb_1$을 제외하고 나머지는 기억획득과 재생에 효과를 미치지 못했다. $Rb_1$은 shuttle box 시험에서 조건회피반응의 재생 (retrieval)을 억제하였다. 이와 같은 4가지 시험이 끝난후에 인삼의 구강투여가 진정, 진통, 해열, 진경효과와 자발 및 탐색활동에 미치는 영향을 500 mg/kg 투여 범위내에서 조사하였으나 아무런 반응도 관찰되지 않았다. 현재까지 연구결과는 $Rg_1$이 기억의 재생 및 학습반응의 획득과정에 대하여 효과가 있다는 것을 의미한다. 최근의 신경성장인자(NGF)가 성숙동물에 있어 뇌신경세포의 생존, 재생 및 조절에 미치는 작용에 관한 연구결과는 지능장해와 건망증에 대한 신경성장인자의 중요성을 시사했다. NGF에 의해 야기된 신경세포돌기 성장의 특이성에 관한 연구결과를 병아리 배배근 신경절에 있어서 NGF의 영향은 $Rh_1$에 의해 증가되었다. 다음으로 $Rb_1$은 병아리 배의 감각 및 교감신경단위에 있어서 NGF-관련 신경섬유 증가를 강화시켰다. NGF와 $Rb_1$을 함께 했을 때도 역시 쥐 대뇌피질의 신경세포 생존수를 증가시키는 경향을 보였다. NGF는 쥐의 배격부 부근의 신경세포를 배양했을 때 cholineacetyl transferase 활성을 증가시키지 않았다. 이러한 결과로 $Rb_1$은 뇌에 있어서 신경세포의 생존이나 재생에 중요한 역활을 한다는 것은 알 수 있었다.

  • PDF

종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템 (A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings)

  • 구민정;안현철
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.85-109
    • /
    • 2018
  • 추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.

비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로 (Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront)

  • 김승수;김종우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.221-241
    • /
    • 2018
  • 최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.

적응형 군집화 기반 확장 용이한 협업 필터링 기법 (Scalable Collaborative Filtering Technique based on Adaptive Clustering)

  • 이오준;홍민성;이원진;이재동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.73-92
    • /
    • 2014
  • 기존 협업 필터링 기법은 사용자들의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 구성하고, 이를 이용해 예측된 사용자의 특정 아이템에 대한 선호도를 기반으로 추천을 수행한다. 이로 인해, 사용자 선호도 정보가 부족하게 되면, 유사 아이템 사용자 집합의 신뢰도가 낮아지고, 추천 서비스의 신뢰도 또한 따라서 낮아진다. 또한, 서비스의 규모가 커질수록, 유사 아이템, 사용자 집합의 생성에 걸리는 시간은 기하급수적으로 증가하고 추천서비스의 응답시간 또한 그에 따라 증가하게 된다. 위와 같은 문제점을 해결하기 위해 본 논문에서는 적응형 군집화 기법을 제안하고 이를 적용한 협업 필터링 기법을 제안하고 있다. 이 기법은 크게 네 가지 방법으로 이루어진다. 첫째, 사용자와 아이템의 특성 벡터를 기반으로 사용자와 아이템 각각을 군집화 하여, 기존 협업 필터링 기법에서 유사 아이템, 사용자 집합을 생성하는데 소요되는 시간을 절약하며, 사용자 선호도 정보만을 이용한 부분 집합 생성보다 추천의 신뢰도를 높이고, 초기 평가 문제와 초기 이용자 문제를 일부 해소한다. 둘째, 미리 구성된 사용자와 아이템의 군집을 기반으로 군집간의 선호도를 이용해 추천을 수행한다. 사용자가 속한 군집의 선호도가 높은 순서대로 아이템 군집을 조회하여 사용자에게 제공할 아이템 목록을 구성하여, 추천 시스템의 부하 대부분을 모델 생성 단계에서 부담하고 실제 수행 시 부하를 최소화한다. 셋째, 누락된 사용자 선호도 정보를 사용자와 아이템 군집을 이용하여 예측함으로써 협업 필터링 추천 기법의 사용자 선호도 정보 희박성으로 인한 문제를 해소한다. 넷째, 사용자와 아이템의 특성 벡터를 사용자의 피드백에 따라 학습시켜 아이템과 사용자의 정성적 특성 정량화의 어려움을 해결한다. 본 연구의 검증은 기존에 제안되었던 하이브리드 필터링 기법들과의 성능 비교를 통해 이루어졌으며, 평가 방법으로는 평균 절대 오차와 응답 시간을 이용하였다.

연희현장에서의 올바른 활용을 위한 진도다시래기 음악분석 (Musical Analysis of Jindo Dasiraegi music for the Scene of Performing Arts Contents)

  • 한승석;남초롱
    • 공연문화연구
    • /
    • 제25호
    • /
    • pp.253-289
    • /
    • 2012
  • 다시래기는 전라남도 진도 지방에서 전승되는 상장례놀이로서, 죽음의 현장에서 새생명이 탄생한다는 생사불이(生死不二)의 메시지를 담고 있다. 더불어 많은 춤과 노래, 재담을 포함한 독특한 양식적 구조로 인해 현장 연희판에서 새로운 콘텐츠에 목말라 있던 공연문화 담당층의 주목을 끌기에 충분했다. 다시래기에 관한 많은 선행연구물들이 이들의 다시래기 재창조 작업에 커다란 도움을 주었다는 것은 불문가지의 사실이다. 그러나 이전의 연구들이 진도다시래기를 다각도로 다루어 적지 않은 성과를 이루어 내었지만 주로 학술적 접근을 통해 연행의 상징적 의미를 구명하는 데 치중한 것이 사실이다. 또한 공연요소들에 대한 접근도 대본, 노래가사, 재담, 행색, 소도구, 장단, 춤사위 등의 소개에 그쳐 정작 중요한 공연요소인 소리(창(唱))의 구체적 모습에 대한 연구가 없어 아쉬움으로 남아 있었다. 이에 본고는 다시래기 음악을 분석하고 그 음악의 성격과 특징을 악보와 함께 제시하여 공연현장의 연희실기자들에게 실질적인 도움을 주고자 하였다. 본고에서 음악분석 대상으로 삼은 소리는 가상제놀이와 거사 사당놀이에 나오는 모든 소리, 그리고 연희패의 입장 시에 부르는 상여소리로 한정하였다. 다시래기 다섯 절차 중 가상제놀이와 거사 사당놀이, 상여소리가 가장 많이 공연되기 때문이다. 수많은 공연 자료가 있지만 분석의 텍스트로는 E&E미디어에서 출반된 음반인 "진도다시래기"를 택하였다. 이는 이 음원의 녹음상태가 우수하며 무엇보다 본고에서 제시된 악보를 학습 자료로 삼아 다시래기 소리를 익히고자 하는 연희실기자들이 음원 구득과 그 활용을 용이하게 할 수 있다는 판단에서이다. 음악분석 결과, 진도다시래기에서 불리는 소리들은 대부분 꺾는 음이 있는 '미'음계를 사용한 전형적인 육자배기토리로 짜여 있었다. 그리고 '솔'음계의 남부경토리는 극히 일부분에 짧게 나타나며, 음악적 완결성은 갖추지 못하고 있는 것도 알 수 있었다. 또한 같은 상장례음악임에도 씻김굿과의 음악적 친연성은 거의 발견되지 않는데, 이는 망자를 달래서 천도하는 씻김굿과 산 자의 삶을 북돋우는 다시래기의 성격과 기능이 다른 데서 비롯된 음악적 특징이라고 생각된다. 한편 다시래기 소리 전반에 판소리 음악어법적 특징들이 보이는데, 이는 다시래기의 복원과 전승에 있어서 주도적 역할을 한 예능보유자의 과거 창극단 활동이력과 무관하지 않다고 여겨진다. 다시래기 예능 담당자의 이러한 활동이력은 다시래기 원형의 변질을 초래한 원인이 되기도 하였지만, 한편으로는 다시래기의 공연요소를 더욱 풍부하게 하여 공연현장에서 콘텐츠로 활용될 수 있는 연희적 기반을 확장시킨 결과로도 나타났다. 본고의 작업이 다시래기를 원형 삼아 죽음의 상실을 극복하고 삶의 활력을 지켜낼 미래의 진지한 현장예술가들에게 의미 있게 활용되기를 기대한다.