• Title/Summary/Keyword: 학습 시나리오

Search Result 273, Processing Time 0.028 seconds

Application of convergence thinking in Problem-based learning on paramedic education (융합적 사고를 적용한 응급구조학의 문제중심학습)

  • Lim, Se-Young;Kim, Soo-Tae;Moon, Tae Young
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.181-188
    • /
    • 2019
  • The purpose of this study is to implement the convergence thinking in problem-based learning (PBL) on paramedic education. PBL scenario course was conducted for 78 students in the third year of emergency medical technology during the first semester of 15 weeks in 2017. After 15 weeks, data of 73 students were analyzed. Among questions about learning interest in PBL, 'neutral' was the most frequent response with 38% for "PBL scenario classes were more effective in learning and acquiring knowledge than lecture class". For "The lessons learned in the class helped to improve the ability to come up with appropriate solutions for problem solving", 57.5% responded 'agree', and for "The lessons learned in the class helped with confidence in the emergency scene", 50.7% responded 'agree'. PBL will be an effective and efficient way of teaching as a learning curriculum for understanding the field situation.

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

Building a Corpus for Korean Tutoring Chatbot (한국어 튜터링 챗봇을 위한 말뭉치 구축)

  • Kim, Hansaem;Choi, Kyung-Ho;Han, Ji-Yoon;Jung, Hae-Young;Kwak, Yong-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.288-293
    • /
    • 2017
  • 교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는 데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.

  • PDF

Implementation of the Player for Petri-Net-based Multimedia Scenario (페트리 네트로 표현된 멀티미디어 시나리오의 재생기 구현)

  • 한승협;임재걸;이계영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.309-311
    • /
    • 1998
  • 동기화 전략을 명시하는 방법으로 시간 구간 명시, 시간축 명시, 레퍼런스 포인트를 두는 방법, 페트리넷을 이용하는 방법 등 매우 다양한 연구 결과가 소개되었다. 본 논문은 기존의 멀티미디어 시나리오의 동기화 명시를 위한 페트리넷 방법[1-3]을 확장하여, 페트리넷 동기화 명시를 실현한 멀티미디어 시나리오를 재생하여 주는 시스템을 구현하고, 자료구조, 멀티프로세싱, 동기화 기법 등을 중심으로 본 재생 시스템을 소개한다. 본 시스템의 특징은 미디어 단위의 시나리오 진행이 가능한 것이다. 멀티미디어 프로그램이 학습에 많이 이용되므로 물리의 '중력'을 간단하게 설명하는 예제와 더불어 어떻게 실행되는가를 설명한다.

  • PDF

Scenario Generation Assistance System Using GPT-3 (GPT-3를 활용한 시나리오 생성 보조 시스템)

  • Jo, Dongha;Jeon, Isle;Moon, Mikyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.503-504
    • /
    • 2022
  • 최근 자연어 처리 분야에서 언어 모델을 활용하여 문장 생성에 관한 연구가 이루어지고 있다. 기존 언어 모델을 활용하여 생성된 시나리오는 텍스트를 학습하여 활용하는 것 외에는 작가의 의도를 반영하는 것에 한계가 존재했고 문맥에 일관성 없는 모습을 보여주었다. 시나리오를 작성하는 것은 작가가 흐름을 주도하며 작업해야 하는 내용이다. 본 논문에서는 GPT-3 기반 언어 모델을 기반으로 다양한 시나리오 문장을 생성하여 작가가 선택하거나 원하는 문장을 직접 입력하는 등 작가의 의도에 부합하는 시나리오를 생성하는 보조 시스템을 제안한다. 본 연구를 통해 시나리오 생성을 포함한 문장 생성 분야의 보조 도구로 활용하여 작가의 의도를 반영하는 결과물을 생성하는 것을 목표로 한다.

  • PDF

연합학습 환경에서 클라이언트 선택의 최적화 기법

  • 박민정;손영진;채상미
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.722-723
    • /
    • 2023
  • 연합학습은 중앙 서버에서 데이터를 수집하는 방식이 아닌 로컬 디바이스 또는 클라이언트에서 학습을 진행하고 중앙 서버로 모델 업데이트만 전송하는 분산 학습 기법으로 데이터 보안 및 개인정보보호를 강화하는 동시에 효율적인 분산 학습을 수행할 수 있다. 그러나, 연합학습 대부분의 시나리오는 클라이언트의 서로 다른 분포 형태인 non-IID 데이터를 대상으로 학습함에 따라 중앙집중식 모델에 비하여 낮은 성능을 보이게 된다. 이에 본 연구에서는 연합학습 모델의 성능을 개선하기 위하여 non-IID 의 환경에서 참여 후보자 중에서 적합한 클라이언트 선택의 최적화 기법을 분석한다.

Adaptive Learning System using Real-time Learner Profiling (실시간 학습자 프로파일링을 이용한 적응적 학습 시스템)

  • Yang, Yeong-Wook;Yu, Won-Hee;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.467-473
    • /
    • 2014
  • Adaptive learning system means a system that provides adaptively learning materials according to the learning needs of learners. It consists of expert model, instructional model and student model. Expert model is that stores information which is to be taught. Student model stores the data of learning history and learning information of students. Instructional model provides necessary learning materials for actual leaners. This paper has constructed student model through learner's profile information and instructional model through dynamic scenario construction. After that, We have developed adaptively to provide learning to learners by constructing suitable dynamic scenario based on learners profile information. In the end, satisfaction result about this system showed a high degree of satisfaction and 88%.

Optimal Network Selection Method for Artificial Neural Network Downscaling Method (인공신경망 Downscaling모형에 있어서 최적신경망구조 선택기법)

  • Kang, Boo-Sik;Ryu, Seung-Yeop;Moon, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1605-1609
    • /
    • 2010
  • CGCM3.1 SRES B1 시나리오의 2D 변수들을 입력값으로 인공신경망 모형을 이용한 스케일 상세화기법으로 강부식(2009)은 소양강댐 유역의 월 누적강수 경향분석을 실시하였다. 원시 GCM 시나리오를 스케일 상세화 시키기 위한 기법의 하나로 인공신경망 모형을 사용할 수 있는데, 이 경우 GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면 근처에서의 일평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수를 잠재적인 예측인자로 사용하여 신경망을 구성하게 된다. 입력변수세트의 구성은 인공신경망의 계산 효율을 좌우하는 중요한 요소라 할 수 있다. 본 연구에서는 변수의 물리적 특성을 고려하여 순차적인 변수선택을 통한 신경망 입력변수 세트를 구성하고 입력세트 간의 학습성과 비교를 통하여, 최적 입력변수 선정 및 신경망의 학습효과를 높일 수 있는 방법에 대해 연구하였다. 물리적 상관성이 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 하여 순차적인 케이스를 학습해본 결과 huss와 ps를 입력변수로 하는 케이스에 대해서 적은 오차와 높은 상관성을 보였다, 또한, 신경망의 학습 효과를 높이기 위해 홍수기와 비홍수기로 구분하여 학습한 결과 홍수기와 비홍수기로 구분하여 신경망을 구성하였을 경우가 향상된 모의값을 나타내었다. 기후변화모의자료는 CCCma(Canadian Center for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 관측값으로는 AWS에서 제공된 일 누적강수를 사용하였다. 인공신경망의 학습기간은 1997년부터 2000년이며, 검증기간은 2001년부터 2004년으로 구성하였다.

  • PDF

Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers (하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF

Han River Basin climate forecast using multi-site artificial neural network (다지점 인공신경망을 이용한 한강수계 기후전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Kim, Jung-Joong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.

  • PDF