• 제목/요약/키워드: 학습 속도 향상

검색결과 521건 처리시간 0.031초

신경망 학습의 일반화 성능향상을 위한 인자들의 결합효과 (The Joint Effect of factors on Generalization Performance of Neural Network Learning Procedure)

  • 윤여창
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.343-348
    • /
    • 2005
  • 본 연구에서는 신경망 학습의 일반화 성능과 학습속도를 개선시키기 위한 인자들의 결합 효과를 살펴본다. 신경망 학습에서 중요한 평가 척도로서 여기서 고려하는 인자들에는 초기 가중값의 범위와 학습률 그리고 계수조정 등이 있다. 특히 초기 가중값과 학습률을 고정시킨 후 새롭게 조정된 계수들을 단계적으로 변화시키는 새로운 인자 결합방법을 이용한다. 이를 통하여 신경망 학습량과 학습속도를 비교해 보고, 계수조정을 통한 개선된 학습 영향을 살펴본다. 그리고 비선형의 단순한 예제를 이용한 실증분석을 통하여 신경망 모형의 일반화 성능과 학습 속도 개선을 위한 각 인자들의 개별 효과와 결합 효과를 살펴보고 그 개선 방안을 논의한다.

사용자 행동 패턴을 기반으로 가중치를 부여한 스팸 메일 필터링 (Weighting based User Behavior Pattern for Filtering Spam Mail)

  • 한아성;김현준;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.389-394
    • /
    • 2007
  • 스팸 메일의 비율은 지속적으로 증가하여 최근 전체 이메일의 92.6%가 스팸 메일인 것으로 드러났다. 본 논문에서는 시간의 경과에 따른 사용자의 액션 패턴을 기반으로 사용자의 관심에 따른 가중치를 적용하여 스팸 메일 여부를 가리는 방법을 다룬다. 액션간의 관계와 액션 사이의 시간에 따라 가중치를 차별화함으로써 얼마나 높은 필터링 성능을 보일 수 있는 지, 또한 학습 속도 향상에 얼마나 기여할 수 있는지를 측정할 것이다. 실험에서는 실제 메일 데이터를 이용하여 베이지안 분류자, 가중치가 부여된 베이지안 분류자와 본 논문이 제안하는 시스템의 학습 성능의 향상 속도를 비교할 것이다. 또한 제안된 시스템이 Concept Drift와 적응 학습, 그리고 개인화를 어떻게 다룰 지를 보일 것이다.

  • PDF

신경망을 이용한 연속 숫자음 인식에 관한 연구 (A Study On Continuous Digits Recognition Using the Neural Network)

  • 이성권;김순협
    • 한국음향학회지
    • /
    • 제17권4호
    • /
    • pp.3-13
    • /
    • 1998
  • 본 논문은 음성 다이어링 시스템을 구현하기 위한 한국어 단독 숫자음 및 연속 숫 자음 인식에 관한 것이다. 단독 숫자음의 인식은 미지의 입력 음성을 재귀 신경망을 이용하 여 모델링된 각 모델에 인가하고, 신경 회로망의 출력 노드의 상태열을 검사하여 적절한 상 태 전이를 하며 최고의 확률값을 출력하는 모델을 인식된 결과로 출력한다. 연속 숫자음의 인식은 미지의 연속 숫자음을 재귀 신경 회로망을 이용한 연속 숫자음 모델에 입력하고, 신 경 회로망의 출력에 대하여 적절한 상태 전이에 대한 검사와 레벨 빌딩(Level Building)을 수행하여 최소의 오차를 가지는 모델열을 인식된 결과로 출력한다. 재귀 신경 회로망을 이 용하여 음절 모델을 만드는 과정에서 재귀 노드는 예상치가 주어지지 않으므로 신경 회로망 의 학습에서 제외되어 현저한 학습 속도의 저하를 가져온다. 따라서 본 논문에서는 재귀 신 경 회로망의 학습 속도를 향상시키기 위한 2가지 방법을 제안 한다. 첫 번째는 재귀 신경 회로망의 재귀 노드의 예상치를 실험적으로 주어줌으로써 학습 속도의 향상을 도모하였다. 두 번째는 음절 모델의 출력노드의 개수와 음절 모델의 세그먼트 경계를 알고리듬을 이용하 여 자동적으로 조절하였다. 실험결과, 단독어의 경우 음절 '에'에 포함하는 한국어 11개의 숫 자음에 대하여 화자 종속의 경우 97.3%, 화자 독립의 경우 80.5%의 인식률을 얻었으며, 연 속 숫자음의 경우는 21종류의 연속 숫자음에 대하여 화자 종속에서 88.2%, 화자 독립의 경 우 81.3%의 인식률을 얻을 수 있었다.

  • PDF

동적모멘트를 이용한 Kernel Relaxation의 회귀율 향상 (Improvement Regression Rate of Kernel Relaxation using the Dynamic Momentum)

  • 김은미;양창호;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.313-315
    • /
    • 2002
  • 본 논문에서는 학습 중 모멘트를 동적으로 조절하여 수련속도와 학습 성능을 향상시키는 동적모멘트를 제안하고 회귀방법으로 동적모멘트의 성능을 재확인한다. 제안된 학습방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 단리 반영하는 방법으로 다른 학습법에 비해 보다 유연한 초평면을 갖으며 수렴에 이르는 시간이 오래 걸리는 KR(Kernel Relaxation)에 적용하여 그 성능을 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(support vector machine)의 순차 학습방법 중 최근 발표된 KR에 적용하여 RMS 오류율을 확인하였다. 실험의 공정성을 위해 신경망 분류기 표준평가데이터인 SONAR 데이터를 사용하였으며 실험 결과 동적모멘트를 이용한 회귀율이 정적모멘트를 이용한 방법보다 향상되었음을 확인하였다.

  • PDF

대분류기법을 이용한 음성인식 시스템의 속도향상 (The Performance Improvement of Speech recognition system using Hierarchical Classification Method)

  • 전화성;김길연;윤영선;오영환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.476-478
    • /
    • 2000
  • 본 논문에서는 HMM 학습모델을 이용하여 1445단어 음성인식기를 구현하고, 대분류기법을 이용하여 그 성능을 향상시키는 방법에 대하여 연구를 수행하였으며, 속도개선에 중점을 두었다. 속도개선을 위해서 HMM모델에 계층적 대분류 기법을 적용시켰다. HMM의 상태수가 많을수록 속도가 저하된다는 점을 고려하여, 적은 상태수의 HMM모델로 후보를 정하고, 가변적으로 해당하는 상태수의 HMM모델로 목적단어를 인식하는 방법을 제안하였다. 후보를 정하는 방법을 후보수와 특징파라미터의 종류와 수를 고려하여 다양하게 설정, 실험하여 가장 이상적인 경우를 찾아내었다.

  • PDF

대표용어를 이용한 kNN 분류기의 처리속도 개선 (Improving Time Efficiency of kNN Classifier Using Keywords)

  • 이재윤;유수현
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2003년도 제10회 학술대회 논문집
    • /
    • pp.65-72
    • /
    • 2003
  • kNN 기법은 높은 자동분류 성능을 보여주지만 처리 속도가 느리다는 단점이 있다. 이를 극복하기 위해 입력문서의 대표용어 w개를 선정하고 이를 포함한 학습문서만으로 학습집단을 축소함으로써 자동분류 속도를 향상시키는 kw_kNN을 제안하였다. 실험 결과 대표 용어를 5개 사용할 경우에는 kNN 대비 문서간 비교횟수를 평균 18.4%로 축소할 수 있었다. 그러면서도 성능저하를 최소화하여 매크로 평균 F1 척도면에서는 차이가 없고 마이크로 평균정확률 면에서는 약 l∼2% 포인트 이내로 kNN 기법의 성능에 근접한 결과를 얻었다.

  • PDF

가상예제를 이용한 $Na{\ddot{i}}ve$ Bayes 분류기 성능 향상 (Improving Performance for $Na{\ddot{i}}ve$ Bayes Classifier Using Virtual Examples)

  • 이유정;강병호;강재호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.655-657
    • /
    • 2005
  • 기계학습에서 분류는 훈련 예제들로 학습하여 생성한 분류기를 활용하여 새로운 예제에 어느 한 범주를 부여하는 것을 말한다. 일반적으로 분류의 성능 즉 정확도의 향상은 학습 알고리즘을 개선하거나 훈련예제 집합을 변형시킴으로써 가능하다. 본 논문에서 소개하는 가상예제를 이용한 분류기 성능 향상 방안은 후자에 속한다. 실세계 분류문제에서 많은 수의 훈련예제들을 수집하는 일은 대상문제에 따라 비용이 많이 드는 경우가 있다. 또한 적은 수의 훈련예제를 학습해 생성한 분류기는 분류성능이 좋지 않을 수 있다. 본 논문에서는 이런 문제를 해결하기 위해서 가상예제를 생성해 훈련예제 집합에 추가하는 방안을 제안하고자 한다. 가상예제를 이용한 분류성능 향상방안이 $Na{\ddot{i}}ve$ Bayes 학습 알고리즘 성능 개선에 효과가 있음을 실험을 통해 확인하였다.

  • PDF

신경망 기반 화자증명 시스템에서 더욱 향상된 사용자 등록속도 (Faster User Enrollment for Neural Speaker Verification Systems)

  • Lee, Tae-Seung;Park, Sung-Won;Hwang, Byong-Won
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.1021-1026
    • /
    • 2003
  • MLP(multilayer perceptron)는 화자증명에 대한 응용에 있어 우수한 특질을 지니고 있지만 동시에 느린 학습속도의 문제를 안고 있다. 편리한 사용을 위해 MLP에 기반한 화자증명 시스템에서는 신속한 화자등록이 요구되며 이 문제는 MLP의 빠른 학습속도에 전적으로 의존한다. 이러한 시스템에서 실시간 등록을 달성하기 위해 지금까지 두 가지 측면에서 연구가 시도되었으며 각기 의도한 목적을 달성하였다. 본 논문에서는 이 두 방법이 상이한 최적화 원리에서 동작한다는 가정 하에 이들을 결합하고 이를 MLP 기반 화자증명 시스템에 적용한다. 이러한 결합이 화자등록 속도를 더욱 향상시킬 수 있다는 사실은 한국어 음성 데이터베이스를 이용한 실험결과에서 입증된다.

  • PDF

다층 퍼셉트론의 새로운 두 단계 학습 알고리즘 (New Two Phases Training Algorithm for Multilayer Perceptrons)

  • 최형준;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.849-856
    • /
    • 2003
  • 본 논문에서는 다층 퍼셉트론의 학습을 위한 새로운 두 단계 학습방법을 제안하였다. 첫 번째 단계는 국소최적해로 빨리 수렴하기 위해 Levenberg-Marquardt 알고리즘을 이용한 국소 탐색 단계이다. 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 새로운 국소최적해로 벗어나기 위한 선형탐색을 기반의 터널링 단계이다. 이 방법은 연결가중치 공간에서 전역최적해를 빠르게 찾을 수 잇는 새로운 방법을 제공한다. 4가지 벤치마크 문제에 기존의 다층 퍼셉트론의 학습 알고리즘과 비교 실험을 통해, 제안된 알고리즘이 빠른 수렴 속도와 낮은 오차값을 가짐을 알 수 있었다.

  • PDF

청각 장애인의 웹기반 교수 학습능력 향상을 위한 2Bi이론 기반 사용자 인터페이스 설계 (User Interface Design for Improving Web-based Instruction Learning Ability of Hearing-impaired Leaners)

  • 황정은;전우천
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2009년도 하계학술대회
    • /
    • pp.255-261
    • /
    • 2009
  • 오늘날 웹은 급속도로 확산되어 교육에 있어서 필수적인 존재로 강력한 힘을 발휘하게 되었다. 사이버 교육 환경의 시대를 맞이하여 웹을 이용한 학습 활동의 비중은 점점 더 증가되었지만 대다수의 웹기반 교수 (Web-based Instruction : WBI)학습 사이트들이 비장애인 중심의 사용자 인터페이스로 설계됨에 따라 청각 장애인을 학습 공간에서 격리 시키고 학습 능력을 저하시키는 이중 장애를 발생시키고 있다. 따라서 본 논문에서는 최근 청각 장애인의 교육방법으로 대두되고 있는 이중언어-이중문화 접근법 (Bilingual Method : 2Bi 이론)을 활용하여 청각 장애인의 WBI 학습 능력을 신장시킬 수 있는 사용자 인터페이스를 설계하였다. 본 사용자 인터페이스의 특징은 다음과 같다. 첫째, 청각 장애인의 웹접근성을 고려한 인터페이스를 설계하여 청각 장애 학습자가 보다 쉽게 학습 공간에 접근하게 하였다. 둘째, 청각 장애인의 장애 정도 및 학습 성취 정도에 따라 3단계 사용자 인터페이스를 제공하여 수준별 학습이 가능하다. 셋째, 순차적 반복 학습이 가능하여 청각 장애인의 학습 능력뿐 아니라 의사소통 기능 향상에도 긍정적인 영향을 제공한다.

  • PDF