• Title/Summary/Keyword: 학습 및 검증 데이터

Search Result 569, Processing Time 0.025 seconds

Zero-Shot Fact Verification using Language Models Perplexities of Evidence and Claim (증거와 Claim의 LM Perplexity를 이용한 Zero-shot 사실 검증)

  • Park, Eunhwan;Na, Seung-Hoon;Shin, Dongwook;Jeon, Donghyeon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.524-527
    • /
    • 2021
  • 최근 국외에서 사실 검증 연구가 활발하게 이루어지고 있지만 한국어의 경우 데이터 집합의 부재로 인하여 사실 검증 연구가 이루어지는데 큰 어려움을 겪고 있다. 이러한 어려움을 해소하고자 자동 생성 모델을 통하여 데이터 집합을 생성하는 시도도 있으나 생성 모델의 특성 상 부정확한 데이터가 생성되어 사실 검증 연구의 퀄리티를 떨어뜨린다는 문제점이 있다. 이러한 문제점을 해소하기 위해 수동으로 구축한 100건의 데이터 집합으로 최근에 이루어진 퓨-샷(Few-Shot) 사실 검증을 확장한 학습이 필요없는 제로-샷(Zero-Shot) 질의 응답에 대한 사실 검증 연구를 제안한다.

  • PDF

Analysis of Judicial Precedent Information related to Debt Recovery based on Deep-Learning (심층 학습 기반의 채권 회수 판례 분석)

  • Kim, Seon-wu;Ji, Sun-young;Choi, Sung-pil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.373-377
    • /
    • 2018
  • 판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.

  • PDF

A Design and Implementation of Web-Based Learning Content Management System (웹기반 학습콘텐츠관리시스템의 설계 및 구현)

  • Kim, Sang-Gil;Kim, Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.373-376
    • /
    • 2005
  • 웹기반의 LCMS(Learning Content Management System)는 단지 학습 콘텐츠를 LMS(Learning Management System)에 제공하기 위하여 검증이 되지 않은 다양한 학습 콘텐츠를 탑재하는 시스템으로 구성되어 있어 학습자의 요구와 수준에 맞는 콘텐츠의 제공이 제대로 이뤄지지 않고 있다. 본 논문에서는 LMS와 LCMS를 연계한 학습이력정보와 학습 콘텐츠의 정보 관리를 함으로써 학습콘텐츠의 질적 향상과 학습자가 선호하는 콘텐츠의 정보를 통계적으로 보여주고 또 분석이 가능하게 함으로써, 학습자에게 보다 향상된 콘텐츠를 제공해 주기위한 학습콘텐츠관리시스템인 LCIMS(Learning Content Information Management System)를 설계하고 구현한다. 제시된 LCIMS는 기존의 LCMS에 학습 콘텐츠를 패키지 또는 SCO 단위로 등록하여 콘텐츠 저장소 (메타데이터 및 콘텐츠 파일)에서 체계적으로 저장 및 관리하는 역할을 추가를 하고 학습자별로 LCIMS의 학습콘텐츠 정보를 수준별, 과정별로 평가, 검색하여 LMS를 통해 학습 할 수 있도록 하는 검색 및 강좌 구성에 활용하며 학습자의 학습정보관리와 학습콘텐츠 정보의 관리를 체계적으로 할 수 있다.

  • PDF

Automatic Error Detection of Morpho-syntactic Errors of English Writing Using Association Rule Analysis Algorithm (연관 규칙 분석 알고리즘을 활용한 영작문 형태.통사 오류 자동 발견)

  • Kim, Dong-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.3-8
    • /
    • 2010
  • 본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.

  • PDF

Improving the Performance of Supervised Learning Models using Error Pattern Modeling (오차패턴 모델링을 이용한 지도학습 모형에서의 성능 향상)

  • Heo, Jun;Kim, Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.280-286
    • /
    • 2005
  • 본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.

  • PDF

A Study on the Construction of Intelligent Learning Platform Model for Faith Education in the Post Corona Era (포스트 코로나 시대 신앙교육을 위한 지능형학습플랫폼 모형 구성 연구)

  • Lee, Eun Chul
    • Journal of Christian Education in Korea
    • /
    • v.66
    • /
    • pp.309-341
    • /
    • 2021
  • The purpose of this study is to develop an intelligent learning platform model for faith education in preparation for the post-corona era. This study reviewed artificial intelligence algorithms, research on learning platform development, and prior research related to faith education. The draft of the intelligent learning platform design model was developed by synthesizing previous studies. The developed draft model was validated by a Delphi survey targeting 5 experts. The content validity of the developed draft model was all 1. This is the validation of the draft model. Three revised opinions of experts were presented on the model. And the model was revised to reflect the opinions of experts. The modified final model consisted of three areas: learning materials, learning activities, learning data, and artificial intelligence. Each area is composed of 9 elements of curriculum, learning content additional learning resources, learner type, learning behavior, evaluation behavior, learner characteristic data, learning activity data, artificial intelligence data, and learning analysis. Each component has 29 sub-elements. In addition, 14 learning floors were formed. The biggest implication of this study is the first development of a basic model of an intelligent learning platform for faith education.

A Learning Rate Model of Deep Learning for Classification Analysis of Problematic Smartphone Use (스마트폰 과의존 분류 분석을 위한 딥러닝 학습률 모델)

  • Kim, Yu Jeong;Lee, Dong Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.401-403
    • /
    • 2021
  • 본 연구는 한국지능정보사회진흥원에서 제공한 2018년 스마트폰 과의존 실태조사에서 사용된 11개 변수와 스마트폰 과의존과의 관계를 탐색하고, 이를 통해 딥러닝 기반 스마트폰 과의존 분류 분석 모델을 개발하고자 시행되었다. 학습데이터셋은 전국 10,000개 가구내 만 3-69세 스마트폰 이용자 25,465명의 스마트폰 이용 형태 및 개인적 특성에 관한 데이터이다. 딥러닝은 심층신경망(DNN)을 설계하였으며, 은닉층(hidden layer)은 4개층으로 구성하였다. 입력한 데이터는 각각 200개, 150개, 100개, 50개, 2개 노드를 거치면서 최종 출력 정보인 스마트폰 과의존 분류율로 나타나는 모델이다. 이때 스마트폰 과의존 분류률을 높이기 위해 학습률(learning rate)과 같은 하이퍼 파라미터를 활용하여 세부조정하면서 가장 잘 학습하는 값을 찾아내었다. 연구결과, 학습횟수가 300번으로 학습율(learning.rate)이 0.01일때 훈련데이터에서 97.43%, 검증데이터에서 98.06%로 가장 높게 나타났다.

  • PDF

Probability Model-Based Data Mining Approach for Real-Time Processing of Large Data: High-Risk Group Detection and Rule Management System for Patients with High Blood Pressure (대용량 데이터의 실시간 처리를 위한 확률모형 기반 마이닝 기법: 고혈압환자 관리를 위한 고위험군 탐지 및 룰 관리 시스템)

  • Park, Sung-Hyuk;Yang, Kun-Woo
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.469-474
    • /
    • 2010
  • 본 연구에서는 보건기관이 효율적으로 고혈압 관리 대상자를 탐색하고, 고혈압 관련 요인에 대한 지식을 효과적으로 관리할 수 있도록 하는 고혈압 고위험군 추정 모형 및 우선 사업 대상자 탐색 모형을 제안한다. 특히, 대용량 데이터 처리 및 실시간 시스템 운영, 외부 환경 변화를 고려한 자동 학습과 같은 현실적인 제약 조건을 해결하는 모형을 개발하는 것을 주 목표로 한다. 지역 보건소에서 수집된 의료 데이터를 이용하여 최적의 파라미터 값을 설정한 고혈압 고위험군 탐색 모형을 도출하였으며, 모형의 검증을 위하여 고혈압 환자정보로 구성된 평가용 데이터를 사용하여 고혈압 자연 발병률 대비 약 2배 수준으로 향상된 고혈압 환자 예측 정확도가 얻어지는 것을 확인하였다. 시스템 운영과 유비보수 측면에서 현실적으로 중요한 문제인 대용량 데이터 처리 및 외부 환경 변화에 강인한 자동학습 이슈를 해결하기 위한 방안에 대해서도 설명하였다.

  • PDF

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Mask and Maskless Wearers Detection based on Deep Learning (딥러닝 기반 마스크 착용자 및 미착용자 검출)

  • Kim, Taehyeon;Woo, Seunghee;Kim, Jeongmi;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.325-327
    • /
    • 2021
  • 코로나19 전염병 예방을 위한 공공장소에서의 마스크 착용이 의무화되고 있다. 그러나 사람들이 다양한 이유로 마스크를 제대로 착용하지 않아 감염에 노출되는 위험이 발생하고 있다. 이러한 방역 문제를 해결하고 본 논문은 영상을 인식하여 마스크를 쓴 얼굴과 쓰지 않은 얼굴을 검출하는 방식을 제안한다. 제안 방법은 마스크 착용자와 비착용자 얼굴 영상을 딥러닝 기반의 YOLO 네트워크로 학습하여, 마스크 착용 유무를 판별한다. 동일 YOLO 네트워크에 대해 여러가지 조건으로 학습을 수행하고, 학습에 사용되지 않은 검증 데이터를 이용해 정확도가 가장 높은 네트워크의 가중치를 선택하였다. 실험결과, 마스크 착용자는 67.2%, 미착용자는 39.8%의 판별 정확도를 보였다. 미착용자에 대해 낮은 정확도를 보인 이유는 학습 데이터의 부족으로 판단되며, 이를 보완하기 위하여 더 많은 학습데이터를 제작하여 성능을 개선시키고자 한다.

  • PDF