• Title/Summary/Keyword: 학습 데이터 모델

Search Result 3,103, Processing Time 0.022 seconds

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Re-validation of the Revised Systems Thinking Measuring Instrument for Vietnamese High School Students and Comparison of Latent Means between Korean and Vietnamese High School Students (베트남 고등학생을 대상으로 한 개정 시스템 사고 검사 도구 재타당화 및 한국과 베트남 고등학생의 잠재 평균 비교)

  • Hyonyong Lee;Nguyen Thi Thuy;Byung-Yeol Park;Jaedon Jeon;Hyundong Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.157-171
    • /
    • 2024
  • The purposes of this study were: (1) to revalidate the revised Systems Thinking Measuring Instrument (Re_STMI) reported by Lee et al. (2024) among Vietnamese high school students and (2) to investigate the differences in systems thinking abilities between Korean and Vietnamese high school students. To achieve this, data from 234 Vietnamese high school students who responded to translated Re_STMI consisting of 20 items and an Scale consisting of 20 items were used. Validity analysis was conducted through item response analysis (Item Reliability, Item Map, Infit and Outfit MNSQ, DIF between male and female) and exploratory factor analysis (principal axis factor analysis using Promax). Furthermore, structural equation modeling was employed with data from 475 Korean high school students to verify the latent mean analysis. The results were as follows: First, in the item response analysis of the 20 translated Re_STMI items in Vietnamese, the Item Reliability was .97, and the Infit MNSQ ranged from .67 to 1.38. The results from the Item Map and DIF analysis align with previous findings. In the exploratory factor analysis, all items were loaded onto intended sub-factors, with sub-factor reliabilities ranging from .662 to .833 and total reliability at .876. Confirmatory factor analysis for latent mean analysis between Korean and Vietnamese students yielded acceptable model fit indices (χ2/df: 2.830, CFI: .931, TLI: .918, SRMR: .043, RMSEA: .051). Lastly, the latent mean analysis between Korean and Vietnamese students revealed a small effect size in systems analysis, mental models, team learning, and shared vision factors, whereas a medium effect size was observed in personal mastery factors, with Vietnamese high school students showing significantly higher results in systems thinking. This study confirmed the reliability and validity of the Re_STMI items. Furthermore, international comparative studies on systems thinking using Re_STMI translated into Vietnamese, English, and other languages are warranted in the context of students' systems thinking analysis.

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.