• 제목/요약/키워드: 학습 데이터

검색결과 6,453건 처리시간 0.033초

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

이러닝 적용을 위한 뇌파기반 인지부하 측정 (EEG based Cognitive Load Measurement for e-learning Application)

  • 김준;송기상
    • 인지과학
    • /
    • 제20권2호
    • /
    • pp.125-154
    • /
    • 2009
  • 본 연구는 이러닝 체제에서 상호작용을 개선할 수 있도록 하기 위하여 사용자의 생리적 데이터 가운데서 뇌파를 통하여 학습자의 인지부하 발생을 파악할 수 있는 지를 연구하고자 하였다. 뇌파를 통하여 인지부하 발생을 알 수 있게 된다면 실시간 이러닝 체제에서 적절한 피드백 제공에 활용될 수 있기 때문이다. 이를 위하여 EEG를 이용하여 학습자의 뇌파를 측정하면서 인지활동을 수행하는 동안 발생되는 인지부하도를 측정하였고 인지과부하를 판별할 수 있는지를 알아보았다. 뇌파 측정을 위하여 언어 관련 작업기억 능력을 측정할 수 있는 듣기회상과제를 제시하였으며, 실험을 통한 과제 정답률 및 뇌파 분석 결과는 다음과 같다. 첫째, 듣기회상과제의 정답률은 회상반응과제에서 1단계는 84.4%, 2단계는 90.6%, 3단계는 62.5%, 4단계는 56.3%를 보였으며, 통계적으로 유의한 차이가 있음을 확인하였다. 즉, 3, 4단계의 경우는 피험자들이 매우 어려움을 겪었던 단계로 인지과부하가 발생했을 것으로 보인다. 둘째, SEF-95% 지표는 1, 2단계에 비해 3, 4단계에서 더욱 높은 값을 보였으며, 이는 피험자들의 인지부하가 3, 4단계에서 높았음을 객관적으로 보여주는 근거이다. 셋째, 감마파의 상대파워는 3, 4단계에서 파워값이 급격히 올라가는 패턴을 보였으며, 통계적으로 유의한 5개의 채널(F3, F4, C4, F7, F8)을 확인하였다. 5개의 채널은 뇌의 브로카 영역(F7, F8) 주위에 위치하고 있으며, 특히 뇌맵핑 분석을 통해 확인한 결과, F8(우반구의 브로카 영역에 해당하는 위치)에서 단계별 난이도가 올라갈수록 활성화의 차이가 크게 나타났다. 넷째, 19채널에 대한 상호 상관 분석을 통해 1, 2단계에 비해 3, 4단계에서 비동기화가 증가하였다. 위의 결과를 통한 본 연구의 결론은 뇌파를 이용하여 인간이 인지활동을 수행하는 동안 인지부하도를 측정할 수 있으며, 인지과부하를 판별해 낼 수 있음을 확인하였다.

  • PDF

청소년이 지각한 부모의 양육태도와 학교생활적응이 문제행동에 미치는 영향에서 자아탄력성의 조절효과 (The moderating effects of ego-resilience on the effects of parents' child-rearing attitude perceived by adolescents and school life adaptation on problem behavior)

  • 김지혜;유난숙
    • 한국가정과교육학회지
    • /
    • 제31권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 본 연구는 부모의 양육태도 및 학교생활적응이 청소년의 문제행동에 미치는 영향을 하위요인별로 구체적으로 밝히고, 부모의 양육태도 및 학교생활적응과 청소년의 문제행동의 관계에서 자아탄력성에 따른 조절효과를 검증하는데 목적이 있다. 이를 위해 한국아동·청소년 패널조사 2010(KCYPS)의 중1 패널 데이터 가운데 4차 자료(2013)인 고등학교 1학년생 총 2,017명을 연구대상으로 분석하였다. SPSS WIN 22.0 통계 프로그램을 이용하여 신뢰도, 위계적 회귀분석을 실시하였다. 분석결과는 다음과 같다. 첫째, 부모의 양육태도(감독, 애정, 합리적 설명, 과잉간섭, 과잉기대, 비일관성) 및 학교생활적응(교사관계, 교우관계, 학교규칙, 학습활동), 자아탄력성이 청소년의 문제행동에 미치는 영향을 분석하였다. 그 결과, 교우관계(-)는 청소년의 문제행동에 미치는 영향력이 가장 높았으며, 학습활동(-), 비일관성(+), 자아탄력성(-), 과잉간섭(+), 감독(-) 순으로 유의미하게 나타났다. 그러나 애정, 합리적 설명, 과잉기대, 교사관계, 학교규칙은 청소년의 문제행동에 유의미한 영향력이 없었다. 둘째, 부모의 양육태도(긍정적인 양육태도, 부정적인 양육태도) 및 학교 생활적응(대인관계, 학교적응)과 청소년의 문제행동의 관계에서 자아탄력성의 조절효과를 분석하였다. 청소년의 문제행동에 영향을 미치는 부모의 긍정적인 양육태도, 대인관계, 학교적응 각각에서 자아탄력성의 조절효과가 나타났다. 그러나 청소년의 문제행동에 영향을 미치는 부모의 부정적인 양육태도에서는 자아탄력성의 조절효과가 나타나지 않았다. 그리고 부모의 양육태도(긍정적인 양육태도, 부정적인 양육태도) 및 학교생활적응(대인관계, 학교적응)이 청소년의 문제행동에 미치는 영향에서 자아탄력성의 조절효과가 전체적으로 나타나지 않았다. 본 연구결과를 통해 가정과수업을 통한 안전교육의 일환으로 다양한 자아탄력성 증진 프로그램의 개발 및 연구가 필요하다고 할 수 있다.

단일 카테고리 문서의 다중 카테고리 자동확장 방법론 (A Methodology for Automatic Multi-Categorization of Single-Categorized Documents)

  • 홍진성;김남규;이상원
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.77-92
    • /
    • 2014
  • 텍스트에 대한 사용자의 접근성을 향상시키기 위해, 이들 문서는 정해진 기준에 따라 카테고리로 분류되어 제공되고 있다. 과거에는 카테고리 분류 작업이 수작업으로 수행되었지만, 문서 작성자에게 분류를 맡기는 경우 분류 정확성을 보장할 수 없고 관리자가 모든 분류를 담당하는 경우 많은 시간과 비용이 소요된다는 어려움이 있었다. 이러한 한계를 극복하기 위해 카테고리를 자동으로 식별할 수 있는 문서 분류 기법에 대한 연구가 활발하게 수행되었다. 하지만 대부분의 문서 분류 기법은 각 문서가 하나의 카테고리에만 속하는 경우를 가정하고 있기 때문에, 하나의 문서가 다양한 주제를 갖는 실제 상황과 부합하지 않는다는 한계를 갖는다. 이를 보완하기 위해 최근 문서의 다중 카테고리 식별을 위한 연구가 일부 수행되었으나, 이들 연구는 대부분 이미 다중 카테고리가 부여되어 있는 문서에 대한 학습을 통해 분류 규칙을 생성하므로 단일 카테고리만 부여되어 있는 기존 문서의 다중 카테고리 식별에는 적용할 수 없다는 제약을 갖는다. 따라서 본 연구에서는 이러한 제약을 극복하기 위해, 카테고리, 토픽, 문서간 관계 분석을 통해 단일 카테고리를 갖는 문서로부터 추가 주제를 발굴하여 이를 다중 카테고리로 자동 확장시킬 수 있는 방법론을 제안하였다. 실험 결과 원 카테고리가 식별된 총 24,000건의 문서 중 23,089건에 대해 카테고리를 확장시킬 수 있었다. 또한 정확도 분석에서 카테고리의 특성에 따라 카테고리 분류 정확도가 상이하게 나타나는 현상을 발견하였다. 본 연구는 단일 카테고리로 분류된 문서에 대해 다중 카테고리를 추가로 식별하여 부여함으로써, 규칙 학습 과정에서 다중 카테고리가 부여된 문서를 필요로 하는 기존 다중 카테고리 문서 분류 알고리즘의 활용성을 매우 향상시킬 수 있을 것으로 기대한다.

다각형 용기의 품질 향상을 위한 딥러닝 구조 개발 (Development of Deep Learning Structure to Improve Quality of Polygonal Containers)

  • 윤석문;이승호
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.493-500
    • /
    • 2021
  • 본 논문에서는 다각형 용기의 품질 향상을 위한 딥러닝 구조 개발을 제안한다. 딥러닝 구조는 convolution 층, bottleneck 층, fully connect 층, softmax 층 등으로 구성된다. Convolution 층은 입력 이미지 또는 이전 층의 특징 이미지를 여러 특징 필터와 convolution 3x3 연산하여 특징 이미지를 얻어 내는 층이다. Bottleneck 층은 convolution 층을 통해 추출된 특징 이미지상의 특징들 중에서 최적의 특징들만 선별하여 convolution 1x1 ReLU로 채널을 감소시키고convolution 3x3 ReLU를 실시한다. Bottleneck 층을 거친 후에 수행되는 global average pooling 연산과정은 convolution 층을 통해 추출된 특징 이미지의 특징들 중에서 최적의 특징들만 선별하여 특징 이미지의 크기를 감소시킨다. Fully connect 층은 6개의 fully connect layer를 거쳐 출력 데이터가 산출된다. Softmax 층은 입력층 노드의 값과 연산을 진행하려는 목표 노드 사이의 가중치와 곱을 하여 합하고 활성화 함수를 통해 0~1 사이의 값으로 변환한다. 학습이 완료된 후에 인식 과정에서는 학습 과정과 마찬가지로 카메라를 이용한 이미지 획득, 측정 위치 검출, 딥러닝을 활용한 비원형 유리병 분류 등을 수행하여 비원형 유리병을 분류한다. 제안된 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과, 양품/불량 판별 정확도 99%로 세계최고 수준과 동일한 수준으로 산출되었다. 검사 소요 시간은 평균 1.7초로 비원형 머신비전 시스템을 사용하는 생산 공정의 가동 시간 기준 내로 산출되었다. 따라서 본 본문에서 제안한 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능의 그 효용성이 입증되었다.

온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락 (Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles)

  • 오치영;강남화
    • 과학교육연구지
    • /
    • 제45권3호
    • /
    • pp.292-303
    • /
    • 2021
  • 본 연구에서는 일상생활에서 에너지 용어가 사용되는 맥락을 알아보기 위하여 온라인 과학 기사를 수집하여 언어 네트워크, 토픽 모델링 분석 기법을 활용해 에너지 관련 기사에 사용된 용어의 빈도, 용어 네트워크, 기사의 주제를 분석하였다. 분석에 사용된 자료는 2018.3.1.부터 1년간의 온라인 과학 분야의 기사 중 에너지를 검색어로 하여 10개의 국내 중앙지에서 검색 및 선정된 2,171편이다. 이 기사들을 자연어 처리하여 51,224개의 문장과 507,901개의 단어로 데이터를 구성하였다. R 프로그램을 활용하여 용어 빈도수 분석 및 언어 네트워크 분석을 실시하였고, 에너지 용어 사용의 맥락 탐색을 위해 구조적 토픽 모델링 분석을 적용해 기사의 주제를 도출하였다. 기사에 사용된 용어 중 빈도수가 유난히 높은 용어는 기술, 연구, 개발로 새로운 소식을 알리는 기사의 특성을 반영한 것으로 나타났다. 한편, 기사 2편당 한 번 이상의 빈도로 사용되는 용어에는 산업 관련 용어(산업, 제품, 시스템, 생산, 시장)와 '전기', '환경'과 같이 에너지 관련 용어로 충분히 기대되는 용어들이 있었다. 한편, 에너지 관련 과학 수업에서 자주 사용되는 '태양', '열', '온도', '발전'도 빈도수 상위에 속하는 용어로 드러났다. 용어 네트워크 분석에서는 산업 및 기술과 관련된 용어와 기초과학 및 연구 관련 용어들이 약한 강도이지만 서로 군집을 이루는 것을 확인하였다. 한편, 에너지와 쌍을 이루는 용어의 분석에서는 '에너지 효율'을 비롯해 '에너지 절감', '에너지 소비' 등과 같이 에너지의 사용에 관한 용어들이 다수를 이루고 그 사용 빈도가 가장 높았다. 에너지 용어가 사용되는 맥락은 16개의 주제를 분류한 4가지 영역으로 '첨단산업', '산업', '기초과학', '환경 및 건강'으로 나타났다. 에너지 사용 관련 용어가 상당히 많이 사용된다는 결과는 에너지 수업의 시작점으로 에너지 저급화 개념의 도입이 효과적일 수 있음을 시사한다. 또한, 첨단산업이나 환경 및 건강의 맥락을 에너지 학습에 도입할 필요성도 보여준다. 본 연구에서 드러난 16개 주제에서 보이는 다양한 에너지 용어가 사용되는 맥락을 재구성해 에너지 관련 수업에 활용한다면 학생들이 학교에서의 에너지 학습과 일상적 상황을 통합적으로 인식하는 데 도움이 될 것이다.

일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색 (The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype)

  • 정다운;유수민;이현수;한상훈
    • 인지과학
    • /
    • 제33권1호
    • /
    • pp.51-75
    • /
    • 2022
  • 경두개 직류전기자극(transcranial Direct Current Stimulation; tDCS)은 지각, 인지, 운동 등의 뇌기능 향상 및 발달 효과가 입증되며, 다양한 분야에서 활용 및 응용되는 비침습적 뇌자극술이다. tDCS 효과는 뇌의 해부학적 구조, 뇌의 노화 정도 등의 뇌신경활성화 특징에 따라 다르게 나타난다는 연구결과들이 보고되고 있다. 일주기 리듬(circadian rhythm)은 대략 하루 주기의 수면과 각성의 생리적 변화패턴을 의미하며 뇌신경활성화 상태는 일주기 리듬에 따라 다르게 나타난다. 일주기 유형(chronotype)은 하루 중에 발현되는 각성도의 크기에 따라 아침의 각성도가 큰 유형은 아침형으로 저녁의 각성도가 큰 유형은 저녁형으로 나누어진다. 본 연구는 일주기 리듬에 의해 변하는 뇌기능 특징이 tDCS 효과에 미치는 영향을 알아보고자 한다. 총 20명의 건강한 성인 대상으로 실험을 진행하였고, 참가자들은 일주기 유형을 분류하기 위해 아침형-저녁형 설문지에 의해 주간형(아침형, 중간형)과 야간형(저녁형)으로 분류했다. 본 실험은 Zoom 프로그램을 이용하여 참가자와 실험자가 온라인으로 만나서 실험을 진행했다. 실험이 확정된 참가자는 실험자로부터 뇌파 기기, 뇌파 데이터를 획득하는 앱이 있는 핸드폰, 핸드폰 거치대, 뇌자극 기기의 사용방법에 대한 설명을 듣고 기기를 테스트해보고 기기를 전달받았다. 기기사용의 어려움을 가진 2명의 참가자는 대면 실험을 진행하여, 실험자가 기기작동을 하여 실험에 참여했다. 일주기 리듬의 상태에 따른 뇌자극 효과를 알아보기 위해 1주일 간격으로 아침과 저녁에 실험했으며, tDCS 자극 전과 후의 신경활성화 반응의 차이를 뇌파를 이용하여 측정하였다. 뇌자극에 의한 뇌기능 변화를 확인하기 위해 자극 전의 뇌파와 자극 후 뇌파가 다른 패턴을 보이며 분류가 잘되는 지를 예측 정확도로 분석했으며, 뇌기능 특징 변화가 일주기 리듬과 일주기 유형에 따라 다르게 나타나는지 확인하기 위해 각 조건의 분류조건(아침/저녁, 주간형/야간형)에서 추출된 주요 EEG 특성을 비교했다. 54개의 뇌파 특성값을 추출하여 SVM(Support Vector Machine) 기계학습 알고리즘으로 분류 모델을 구축하였고, 구축된 모델을 Leave-One-Out 교차검증(Leave-One-Out Cross-Validation)을 사용하여 자극 전과 후의 뇌파 반응을 예측하는지 평가하였고, 분류예측모델의 주요 예측 인자를 확인하는 주요 특성 분석을 진행하였다. 아침과 저녁의 tDCS에 따른 뇌파 특징을 분류하는 예측 정확도는 모두 98%로 나타났으며, 주간형의 아침 자극 조건과 저녁 자극 조건의 예측 정확도는 92%와 96%이며, 야간형의 아침자극 조건과 저녁 자극 조건의 예측 정확도는 모두 94%로 나타났다. 아침 자극 전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성결과는 주간형과 야간형에 따라 다르게 나타났다. 주간형은 좌측 측두 두정엽과 전전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽의 뇌파 특성값들만 나타났다. 저녁 자극전과 후의 뇌파를 분류하는 상위 3개의 주요 EEG 특성 결과 또한 주간형과 야간형에 따라 다르게 나타났다. 주간형은 우측 측두 두정엽과 좌측 전두엽의 뇌파 특성값이 나타났으며, 야간형은 측두 두정엽과 전두엽의 뇌파 특성값이 나타났다. 이와 같은 연구결과는 일주기 리듬과 유형에 따라 아침과 저녁의 뇌기능 특징이 다르게 나타나서 뇌자극 효과가 다르게 나타날 수 있음을 확인한 결과이다. 본 연구의 결과는 효과적인 뇌자극을 위해 개인의 뇌신경 활성화 상태 및 특징에 따라서 뇌자극 프로토콜을 조정할 필요성을 제시한다는 데에 의의를 찾을 수 있다.

선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구 (A Study on Image-Based Mobile Robot Driving on Ship Deck)

  • 김선덕;박경민;왕승열
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1216-1221
    • /
    • 2022
  • 선박은 화물 운송의 효율을 증대시키기 위해 대형화되는 추세이다. 선박 대형화는 선박 작업자의 이동시간 증가, 업무 강도 증가 및 작업 효율 저하 등으로 이어진다. 작업 업무 강도 증가 등의 문제는 젊은 세대의 고강도 노동 기피 현상과 맞물러 젊은 세대의 노동력 유입을 감소시키고 있다. 또한 급속한 인구 노령화도 젊은 세대의 노동력 유입 감소와 복합적으로 작용하면서 해양산업 분야의 인력 부족 문제는 극심해지는 추세이다. 해양산업 분야는 인력 부족 문제를 극복하기 위해 지능형 생산설계 플랫폼, 스마트 생산 운영관리 시스템 등의 기술을 도입하고 있으며, 스마트 자율물류 시스템도 이러한 기술 중의 하나이다. 스마트 자율물류 시스템은 각종 물품들을 지능형 이동로봇을 활용하여 전달하는 기술로서 라이다, 카메라 등의 센서를 활용해 로봇 스스로 주행이 가능하도록 하는 것이다. 이에 본 논문에서는 이동로봇이 선박 갑판의 통행로를 감지하여 stop sign이 있는 곳까지 자율적으로 주행할 수 있는지를 확인하였다. 자율주행은 Nvidia의 End-to-end learning을 통해 학습한 데이터를 기반으로, 이동로봇에 장착된 카메라를 통해 선박 갑판의 통행로를 감지하여 수행하였다. 이동로봇의 정지는 SSD MobileNetV2를 이용하여 stop sign을 확인하여 수행하였다. 실험은 약 70m 거리의 선박 갑판 통행로를 이동로봇이 이탈 없이 주행 후 stop sign을 확인하여 정지하는지를 5회 반복 실험하였으며, 실험 결과 경로이탈 없이 주행하는 결과를 얻을 수 있었다. 이 결과를 적용한 스마트 자율물류 시스템이 산업현장에 적용된다면 작업자가 작업 시 안정성, 노동력 감소, 작업 효율이 향상될 것으로 사료된다.

연구학교 참여 초등교사의 인공지능 활용 과학 수업에 관한 인식 변화 (Changes in Perceptions of Science Classes Using Artificial Intelligence among Elementary Teachers Participating in Research School)

  • 김태하;윤혜경
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제42권3호
    • /
    • pp.467-479
    • /
    • 2023
  • 학교 교육에서 인공지능을 활용한 교육이 성공적으로 이루어지기 위해서는 교사의 인식이 중요하다. 이 연구에서는 연구학교 참여 전후에 초등교사의 인공지능 활용 과학 수업 필요성에 관한 인식과 교수 효능감 수준을 '학습', '교수', '평가', '의사소통' 네 가지 측면에서 조사하고 분석하였다. 강원특별자치도교육청에 의해 지정되어 일 년 동안 연구학교로 운영된 한 초등학교에 근무하는 초등교사 24명을 대상으로 하였다. 연구학교 운영 전후에 수집한 설문 결과를 데이터로 활용하여 인공지능 활용 과학 수업에 대한 인식 변화를 탐색하였고, 특히 네 명의 교사를 대상으로 개별 심층 면담을 하여 인공지능 활용과학 수업에 관한 인식 변화에 영향을 미친 경험 요인을 탐색하였다. 주요한 연구 결과는 다음과 같다. 첫째, 초등교사는 연구학교 경험 이전부터 인공지능 활용 과학 수업 필요성에 관해 긍정적으로 인식하고 있었으며, 이는 연구학교 경험 이후에도 유사하게 유지되었다. 둘째, 초등교사의 인공지능 활용 과학교수 효능감은 대체로 중간 수준이었으며 연구학교 경험 이후에도 통계적으로 유의미한 수준으로 높아지지 않았다. 셋째, '필요성-효능감'을 함께 사분면으로 분석한 결과 연구학교를 경험한 초등교사는 '학습', '교수', '평가' 측면에 대하여 절반 정도가 긍정적인 변화를 경험하였다. 넷째, 초등교사의 인공지능활용 과학 수업에 관한 인식 변화에 영향을 미친 중요한 경험 요인은 '개인적 배경과 특성', '교사 개인의 수업 실천 경험', '교사공동체 활동', '학교 행정과 업무' 네 가지로 추출할 수 있었다. 이와 같은 연구결과가 연구학교 운영과 인공지능 활용 초등 과학교육에 주는 시사점을 논의하였다.