• Title/Summary/Keyword: 학습 데이터

Search Result 6,453, Processing Time 0.036 seconds

A Design Elements for Visualizing Online Learning Activity Data (온라인 학습 활동 데이터의 시각화를 위한 요소 설계)

  • Hur, YunA;Lee, DongYub;Lim, HeuiSeok
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.143-145
    • /
    • 2017
  • 최근 IT 기술이 발전함에 따라 교육형태도 많이 발전되고 있다. 특히 IT 기기를 활용할 수 있는 온라인 교육에 집중되고 있다. 온라인 교육 시스템 중 하나인 MOOT(Massive Open Online Textbook)이 주목받고 있다. MOOT는 텍스트 중심의 교육 기반이며, 온라인 교재 내에 실습환경이 있어 언제 어디서나 학습자가 자기주도적인 학습을 할 수 있도록 도와준다. 온라인을 통해 학습하기 때문에 수많은 학습자의 학습현황을 쉽게 파악할 수 없는 문제점이 제기되었다. 따라서 본 논문에서는 데이터 결과를 한 눈에 파악할 수 있도록 시각화를 제안하여, MOOT시스템 내에서 학습한 고려대학교 343명의 학생 데이터를 기반으로 학습자 데이터 시각화를 설계하였다.

  • PDF

Data Flow Prediction Scheme using ARIMA Model (ARIMA 모델을 이용한 데이터 흐름 예측 기법)

  • Kim, Dong-Hyun;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.141-142
    • /
    • 2018
  • 기존 데이터의 패턴 예측에는 통계를 기반으로 한 수학적 모델이 주로 사용되었으나 새로운 데이터에 대한 피드백이 부족하기 때문에 장기간의 데이터 예측에 한계가 있다. 또한 데이터의 특성이 다양하고 복잡한 경우에는 수학적 모델의 결합 및 계산과정이 어려워진다. 따라서 본 논문에서는 데이터의 학습 및 예측에 기존 정적 모델이 아닌 기계학습 중 시계열 데이터 분석 (Time Series Analysis) 을 기반으로 연구를 진행하였다. 기계학습은 복잡한 특성을 가진 데이터를 학습하여 미래의 데이터 값을 예측하거나 분류하는데 있어서 정확도 및 처리시간 측면에서의 성능을 향상시킬 수 있다.

  • PDF

Optimization of Sensor Data Window Size for Deep Learning Regression Model (딥러닝 회귀 모델 개발을 위한 센서 데이터 윈도우 사이즈 최적화 기법)

  • Choi, Min-Seo;Yoo, Dong-Yeon;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.610-613
    • /
    • 2022
  • 센서 데이터의 중요성이 커지면서 센서 데이터 처리 연구의 수요가 증가하고 있다. 센서 데이터 기반의 딥러닝 모델 개발 시, 센서 데이터 단일 값에 의한 출력이 아닌 시계열적인 특성을 반영하여 연속적인 데이터 간의 연관성을 파악할 수 있는 슬라이딩 윈도우 기법을 통해 효율적으로 데이터를 분석하고 처리할 수 있다. 하지만, 기존의 방법들은 학습 성능(학습 시간 및 모델 성능)에 미치는 영향을 평가하는 기준 없이 입력 데이터의 윈도우 사이즈를 임의로 설정하여 데이터를 처리해 왔다. 따라서, 본 논문은 학습 시간과 모델 성능을 기준으로 센서 데이터의 윈도우 사이즈 최적화 기법을 제안한다. 제안한 방법은 전류를 이용하여 스위치와 다이오드 온도를 추정하는 가상 센서(virtual sensor) 실험 테스트베드에 적용하여, 학습 시간 중심으로는 5%의 윈도우 사이즈를, 모델 성능 중심으로는 R2 SCORE 의 값을 0.9295 로 갖는 8%의 윈도우 사이즈가 최적으로 도출되었다.

Diabetes Predictive Analytics using FCM Clustering based Supervised Learning Algorithm (FCM 클러스터링 기반 지도 학습 알고리즘을 이용한 당뇨병 예측 분석)

  • Park, Tae-eun;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.580-582
    • /
    • 2022
  • 본 논문에서는 데이터를 정량화하여 특징을 분류하기 위한 방법으로 퍼지 클러스터링 기반 지도 학습 방법을 제안한다. 제안된 방법은 FCM 클러스터링을 기법을 적용하여 군집화를 수행한다. 그리고 군집화 된 데이터들 중에서는 정확히 분류되지 않은 데이터가 존재하므로 분류되지 않은 데이터에 대해 지도 학습 방법을 적용한다. 본 논문에서는 당뇨병의 유무를 타겟 데이터로 설정하고 나머지 8개의 속성의 데이터를 FCM 기반 지도 학습 방법을 적용하여 당뇨병의 유무를 예측한다. 당뇨병 예측에 대한 성능을 30회의 K-겹 교차검증 (K-Fold Corss Validation)을 이용하여 평가하였으며, 다층 퍼셉트론의 경우에는 훈련 데이터가 77.88%, 테스트 데이터가 62.78%로 나타났고 제안된 방법의 경우에는 훈련 데이터가 79.96%, 테스트 데이터 74.16%로 나타났다.

  • PDF

Application of Data Mining Technique in Characterizing the Scholastic Aptitude of the Students (데이터 마이닝 기법을 이용한 학습 능력 분석 시스템 개발)

  • 김범은;김덕희;원유집
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.144-146
    • /
    • 1999
  • 데이터 마이닝은 대량의 데이터로부터 데이터 내에 존재하는 관계, 패턴, 규칙 등을 찾아내고 모형화 함으로서 유용한 지식을 추출하는 방법이다. 데이터 마이닝을 이용한 이 시스템은 데이터를 비슷한 특성을 가지는 집단으로 분류하여 집단의 특성을 찾아내고 데이터 항목간의 연관성을 유출해 내어 학생들의 적절한 학습지도 영역을 찾아내는데 목적이 있다. 본 논문에서는 개발한 시스템에서 수학 학습 능력에 대한 특성을 도출해 내는 방법을 알아보고, 어떻게 기존의 학원의 역할을 대신할 수 있는지 검증한다.

  • PDF

A Automated Method for Training Keyword Spotter based on Speech Synthesis (키워드 음성인식을 위한 음성합성 기반 자동 학습 기법)

  • Lim, Jaebong;Lee, Jongsoo;Cho, Yonghun;Baek, Yunju
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.494-496
    • /
    • 2021
  • 최근 경량 딥러닝 기반 키워드 음성인식은 가전, 완구, 키오스크 등 다양한 응용에 음성 인터페이스를 쉽게 적용할 수 있는 기술로서 주목받고 있다. 키워드 음성인식은 일부 키워드만 인식 가능한 음성인식 기술로서 저성능 디바이스에서 활용 가능한 장점이 있다. 그러나 응용에 따라 필요한 키워드에 대하여 다시 음성데이터를 수집해야하고 이를 학습하여 모델을 새로 준비해야하는 단점이 있다. 따라서 본 연구에서는 음성데이터 수집 없이 음성합성을 통해 생성한 음성으로만 키워드 음성인식 모델을 학습하는 음성합성 기반 자동 학습 기법을 제안하였다. 생성한 음성데이터를 활용하고자하는 시도가 활발히 이루어지고 있으나, 기존 연구에서는 정확도를 유지하기 위하여 수집한 실제 음성데이터가 필요한 한계가 있다. 제안한 자동 학습 기법은 생성한 음성데이터에 대해 복합 데이터 증대 기법을 적용하여 실제 음성데이터 없이 키워드 음성인식의 정확도를 높였다. 제안한 기법에 대하여 상용 음성합성 서비스를 기반으로 수집한 한국어 키워드 데이터세트를 활용하여 성능평가를 진행하였다. 20개 한국어 키워드에 대해 실험한 결과, 제안한 기법을 적용하여 학습시킨 키워드 음성인식 모델의 정확도는 86.44%임을 확인하였다.

A Study on comparative Analysis learning pattern of experts-learners based on Eye-tracking (시선추적 기반 전문가-학습자 간 학습유형 비교 분석 연구)

  • Song, HyeJin;Kim, Kyong-Ah;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.705-707
    • /
    • 2016
  • 본 연구는 e러닝 학습 환경에서 문제 풀이에 대한 전문가와 학습자 사이의 시선 흐름을 비교 분석하여 학습자에게 보다 효율적인 학습 방법을 제시 할 수 있는 데이터를 추출하는 데 목적이 있다. 연구를 위해 빛의 투과율이 적은 장소의 PC에 웹캠을 설치하였고, 학습 화면의 해상도는 $1600{\times}900$로, 3명의 전문가와 5명의 학습자를 통하여 10문항에 대한 시선 추적으로 학습 데이터를 축적하였다. 축적한 데이터를 통하여 고득점 학습자나, 전문가의 학습 방법을 비교하여 유사도를 측정하였고, 유사도에 따라 학습 유형을 추천해 줄 수 있는 가능성을 확인하였다.

A Study on Action Recognition based on RGB data (RGB 데이터 기반 행동 인식에 관한 연구)

  • Kim, Sang-Jo;Kim, Mi-Kyoung;Cha, Eui-Young
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.936-937
    • /
    • 2017
  • 최근 딥러닝을 통하여 영상의 카테고리 분류를 응용한 행동 인식이 활발히 연구되고 있다. 그러나 행동 인식을 위한 기존 연구 방법은 높은 수준의 하드웨어 사양을 요구하며 행동 인식에 대한 학습에 많은 시간이 소모되는 문제점을 지니고 있다. 또한, 행동 인식 테스트 결과를 얻기 위해 많은 시간이 소모되며 딥러닝 특성상 적은 수의 학습 데이터는 overfitting 문제를 일으킨다. 본 연구에서는 이러한 문제점을 해결하고자 행동인식을 위한 학습시간과 테스트 시간 감소를 위해 미리 학습된 VGG 모델을 사용해 얻어낸 RGB 데이터의 특징만을 학습에 사용하고 적은 수의 데이터로 행동 인식 테스트 결과를 높이기 위하여 RGB 데이터 증대를 통해 기존의 행동인식 연구보다 학습시간과 행동인식 테스트에 소모되는 시간을 줄인 방법을 행동 인식에 적용하였다. 이 방법을 UCF50 Dataset 에 적용하여 98.13%의 행동인식에 관한 정확성을 확인하였다.

A Method of Constructing Large-Scale Train Set Based on Sentiment Lexicon for Improving the Accuracy of Deep Learning Model (딥러닝 모델의 정확도 향상을 위한 감성사전 기반 대용량 학습데이터 구축 방안)

  • Choi, Min-Seong;Park, Sang-Min;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.106-111
    • /
    • 2018
  • 감성분석(Sentiment Analysis)은 텍스트에 나타난 감성을 분석하는 기술로 자연어 처리 분야 중 하나이다. 한국어 텍스트를 감성분석하기 위해 다양한 기계학습 기법이 많이 연구되어 왔으며 최근 딥러닝의 발달로 딥러닝 기법을 이용한 감성분석도 활발해지고 있다. 딥러닝을 이용해 감성분석을 수행할 경우 좋은 성능을 얻기 위해서는 충분한 양의 학습데이터가 필요하다. 하지만 감성분석에 적합한 학습데이터를 얻는 것은 쉽지 않다. 본 논문에서는 이와 같은 문제를 해결하기 위해 기존에 구축되어 있는 감성사전을 활용한 대용량 학습데이터 구축 방안을 제안한다.

  • PDF

Korean Semantic Role Labeling Using Domain Adaptation Technique (도메인 적응 기술을 이용한 한국어 의미역 인식)

  • Lim, Soojong;Bae, Yongjin;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.56-60
    • /
    • 2014
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.

  • PDF