• Title/Summary/Keyword: 학습 데이터

Search Result 6,453, Processing Time 0.034 seconds

A Fusion Method of Co-training and Label Propagation for Prediction of Bank Telemarketing (은행 텔레마케팅 예측을 위한 레이블 전파와 협동 학습의 결합 방법)

  • Kim, Aleum;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.686-691
    • /
    • 2017
  • Telemarketing has become the center of marketing action of the industry in the information society. Recently, machine learning has emerged in many areas, especially, financial prediction. Financial data consists of lots of unlabeled data in most parts, and therefore, it is difficult for humans to perform their labeling. In this paper, we propose a fusion method of semi-supervised learning for automatic labeling of unlabeled data to predict telemarketing. Specifically, we integrate labeling results of label propagation and co-training with a decision tree. The data with lower reliabilities are removed, and the data are extracted that have consistent label from two labeling methods. After adding them to the training set, a decision tree is learned with all of them. To confirm the usefulness of the proposed method, we conduct the experiments with a real telemarketing dataset in a Portugal bank. Accuracy of the proposed method is 83.39%, which is 1.82% higher than that of the conventional method, and precision of the proposed method is 19.37%, which is 2.67% higher than that of the conventional method. As a result, we have shown that the proposed method has a better performance as assessed by the t-test.

A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning (머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.225-230
    • /
    • 2020
  • Machine learning is an algorithm which learns a computer based on the data so that the computer can identify the trend of the data and predict the output of new input data. Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a way of learning a machine with given label of data. In other words, a method of inferring a function of the system through a pair of data and a label is used to predict a result using a function inferred about new input data. If the predicted value is continuous, regression analysis is used. If the predicted value is discrete, it is used as a classification. A result of analysis, no. 8 (5, 3.4, setosa), 27 (5, 3.4, setosa), 41 (5, 3.5, setosa), 44 (5, 3.5, setosa) and 40 (5.1, 3.4, setosa) in Table 3 were classified as the most similar Iris flower. Therefore, theoretical practical are suggested.

Continual Learning using Data Similarity (데이터 유사도를 이용한 지속적 학습방법)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.514-522
    • /
    • 2020
  • In Continuous Learning environment, we identify that the Catastrophic Forgetting phenomenon, which forgets the information of previously learned data, occurs easily between data having different domains. To control this phenomenon, we introduce how to measure the relationship between previously learned data and newly learned data through the distribution of the neural network's output, and how to use these measurements to mitigate the Catastrophic Forcing phenomenon. MNIST and EMNIST data were used for evaluation, and experiments showed an average 22.37% improvement in accuracy for previous data.

A Method of Grouping Features from Big Data based on Semantic Hierarchy for Accuracy Enhancement (빅데이터 환경에서 학습 정확도 향상을 위한 의미 계층 기반 속성 집단화 기법)

  • Lee, Keonsun;Lee, Keonsoo;Kang, Byeong-G
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.892-894
    • /
    • 2019
  • 빅데이터 기반의 기계학습은 대규모 데이터를 이용하여, 숨겨진 패턴을 찾아내는 학습과정과, 그렇게 찾아낸 패턴을 이용하여 새로운 데이터를 해석하는 추론과정으로 이루어진다. 이 과정을 통해 학습된 패턴은 데이터를 구성하는 속성들과 긴밀한 연관성을 갖고 있다. 학습에 사용된 데이터의 원 데이터를 구성하는 각각의 속성과 추론 결과가 동일한 계층 관계를 갖고 있다면, 모든 속성을 동일하게 처리할 수 있지만, 그렇지 않은 경우, 속성들 사이의 계층 정보를 고려하는 것이, 추론 결과의 정확도를 높일 수 있다. 이에 본 연구에서는 속성들 사이의 계층 관계를 고려한 추론 기법을 제안하고, 사례연구를 통해 제안 방법을 실제 상황에 적용하는 방법을 제시한다.

Depth data object detection based on autonomous driving scenario using a single depth sensor (단일 깊이 센서를 이용하는 자율주행 시나리오 기반의 깊이 데이터 객체 감지)

  • Kim, Myeong-kyun;Jeong, Jinwoo;Kim, Sungjei
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1318-1321
    • /
    • 2022
  • 본 논문에서는 단일 깊이 센서를 사용하는 자율주행 시나리오에서 거리 계산에 주로 이용되는 깊이 데이터만 이용하는 객체 감지 기술을 제안한다. 우선, 해당 시나리오에서 객체 감지 학습 데이터는 깊이 데이터가 사용되지만 상대적으로 객체 감지 성능을 비교하기 위해 동일한 시간의 색상, 깊이 데이터를 함께 획득하여 학습에 이용한다. 학습모델은 객체 감지 분야에서 최근 주목 받고 있는 YOLOv5로 선정하여 색상, 깊이 데이터의 객체 감지 학습의 결과를 각각 확인하였다. 결과적으로 색상과 깊이 데이터 사이에서 객체 감지 학습 결과의 차이를 확인하며 본 논문에서 제안하는 자율주행 시나리오에 깊이 영상만 이용하는 객체 감지 기술의 문제점과 향후 자율주행 기술 발전에 기여 가능성을 확인할 수 있다.

  • PDF

Gender Bias Mitigation in Gender Prediction Using Zero-shot Classification (제로샷 분류를 활용한 성별 편향 완화 성별 예측 방법)

  • Yeonhee Kim;Byoungju Choi;Jongkil Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.509-512
    • /
    • 2024
  • 자연어 처리 기술은 인간 언어의 이해와 처리에서 큰 진전을 이루었으나, 학습 데이터에 내재한 성별 편향이 모델의 예측 정확도와 신뢰성을 저하하는 주요한 문제로 남아 있다. 특히 성별 예측에서 이러한 편향은 더욱 두드러진다. 제로샷 분류 기법은 기존에 학습되지 않은 새로운 클래스를 효과적으로 예측할 수 있는 기술로, 학습 데이터의 제한적인 의존성을 극복하고 다양한 언어 및 데이터 제한 상황에서도 효율적으로 작동한다. 본 논문은 성별 클래스 확장과 데이터 구조 개선을 통해 성별 편향을 최소화한 새로운 데이터셋을 구축하고, 이를 제로샷 분류 기법을 통해 학습시켜 성별 편향성이 완화된 새로운 성별 예측 모델을 제안한다. 이 연구는 다양한 언어로 구성된 자연어 데이터를 추가 학습하여 성별 예측에 최적화된 모델을 개발하고, 제한된 데이터 환경에서도 모델의 유연성과 범용성을 입증한다.

Estimation of Distribution Algorithm for Continuous Function Optimization (연속 변수 함수 최적화를 위한 탐색점 분포 학습 알고리즘)

  • 신수용;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.51-53
    • /
    • 2000
  • 기존의 진화 연산의 한계를 극복하기 위해서 탐색점 분포 학습 알고리즘(Estimation of Distribution Algorithm)이 부각되고 있다. 탐색점 분포 학습 알고리즘은 데이터의 분포를 파악하고, 파악된 분포를 이용해서 새로운 학습 데이터를 생성하는 일련의 과정을 통하여 최적화 문제를 해결하는 방법이다. 그런데, 기존의 탐색점 분포 학습 알고리즘들은 대부분 이진 벡터값을 가지는 최적화 문제들만을 대상으로 하고 있다. 본 논문에서는 비감독 확률 신경망 모델인 헬름홀츠 머신을 이용해서 데이터의 분포를 학습하여 연속 함수 최적화 문제를 해결하는 방법을 개발하였다. 테스트 함수들에 대해서 실수 표현형을 사용한 유전자 알고리즘과 결과를 비교하여 제안하는 방법의 우수성을 검증하였다.

  • PDF

Valid Data Conditions and Discrimination for Machine Learning: Case study on Dataset in the Public Data Portal (기계학습에 유효한 데이터 요건 및 선별: 공공데이터포털 제공 데이터 사례를 통해)

  • Oh, Hyo-Jung;Yun, Bo-Hyun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • The fundamental basis of AI technology is learningable data. Recently, the types and amounts of data collected and produced by the government or private companies are increasing exponentially, however, verified data that can be used for actual machine learning has not yet led to it. This study discusses the conditions that data actually can be used for machine learning should meet, and identifies factors that degrade data quality through case studies. To this end, two representative cases of developing a prediction model using public big data was selected, and data for actual problem solving was collected from the public data portal. Through this, there is a difference from the results of applying valid data screening criteria and post-processing. The ultimate purpose of this study is to argue the importance of data quality management that must be most fundamentally preceded before the development of machine learning technology, which is the core of artificial intelligence, and accumulating valid data.

Performance Comparison of Statistics-Based Machine Learning Model for Classification of Technical Documents (기술문서 분류를 위한 통계기반 기계학습 모델 성능비교 및 한계 연구)

  • Kim, Jin-gu;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.393-396
    • /
    • 2022
  • 본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.

Online anomaly detection algorithm based on deep support vector data description using incremental centroid update (점진적 중심 갱신을 이용한 deep support vector data description 기반의 온라인 비정상 탐지 알고리즘)

  • Lee, Kibae;Ko, Guhn Hyeok;Lee, Chong Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.199-209
    • /
    • 2022
  • Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.