성취정서란 학생들이 학업상황에서 경험하는 정서로, 성취활동이나 성취결과와 직접적으로 연관되는 정서이다. 교육심리 분야에서 학생들의 동기와 정서에 대한 측면으로 연구의 관심이 확대되면서 최근에는 우리나라에서도 성취정서에 대한 연구가 활발하게 이루어지고 있다. 본 연구는 그 동안 이루어진 성취정서 관련 연구들을 사회?문화적 배경에 따라 국내와 국외로 나누어 분석하고 구조화하여 성취정서 관련 연구의 흐름과 방향성을 파악하고, 이를 토대로 국내 학업상황에 적합한 성취정서를 연구하는 데 필요한 기초자료를 제공하고자 하는 목적에서 시작되었다. 연구대상은 국내외 데이터베이스 검색을 통해 추출된 2000년부터 2016년까지의 국내외 학술지 논문으로, 국내 47편, 국외 58편, 총 105편이 선정되었다. 분석기준은 연구시기, 연구내용, 연구방법으로 나누었고, 연구시기는 기간을 통제하지 않고 분석하였으며, 연구내용에는 연구변인과 성취상황을 포함하였고, 연구방법에는 연구설계, 연구유형, 분석방법, 측정도구, 연구대상을 포함하였다. 이상의 자료를 SPSS를 사용하여 기술통계치를 산출하였으며, 국내외로 나누어 분석하였다. 연구결과 성취정서에 대한 연구의 흐름을 크게 성취정서에 대한 척도개발 연구와 관련 변인 간의 관계 연구로 나누어볼 수 있었다. 성취정서를 측정하는 대표적 척도인 AEQ가 국외에서 개발된 척도이기 때문에 국내 성취정서 연구에 적합한 척도개발 연구의 빈도가 높게 나타났으며, 국내의 경우 동기, 특히 자기조절 학습전략과 학업적 정서조절과 관련된 연구의 빈도가 높은 것으로 나타났다. 이를 바탕으로 앞으로 국내 성취정서 연구가 나아가야 할 방향을 제시하였다.
감시카메라 환경에서 군중의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 H.264 압축과정에서의 움직임 벡터 정보를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지기로 설계하였다. 제안된 시스템은 H.264 압축 과정에서 얻어지는 움직임 벡터를 이용함으로써, 실시간성을 보장하며 SVDD의 점증적 갱신 학습 능력으로 인하여 비정상 집단행동 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.
본 논문은 응급의료 환경에서 음성인식 성능을 향상시키기 위하여 실제 환경에서 데이터 수집 방법을 정의하고 정의된 환경에서 수집된 데이터를 전사하는 방법을 제안한다. 그리고 제안된 방법으로 수집되고 전사된 데이터를 이용하여 기본 음성인식 실험을 진행함으로써 제안한 수집 및 전사 방법을 평가하고 향후 연구 방향을 제시하고자 한다. 모든 음성은 기본적으로 16비트 해상도와 16 kHz 샘플링으로 저장되었다. 수집된 데이터는 총 166건의 대화로서 8시간 35분의 분량이다. 수집된 데이터는 Praat를 이용하여 철자 전사, 음소 전사, 방언 전사, 잡음 전사, 그리고 의료 코드 전사를 수행하여 다양한 정보를 포함한 텍스트 데이터를 구축하였다. 이와 같이 수집된 데이터를 이용하여 기본 베이스라인 실험을 통하여 응급의료 영역에서의 음성인식 문제를 실제로 확인할 수 있었다. 본 논문에서 제시한 데이터는 응급의료 영역의 1단계 데이터로서 향후 의료 영역에서의 음성인식 모델의 학습 데이터로 활용되고, 나아가 이 분야의 음성기반 시스템 개발에 기여할 수 있을 것으로 기대된다.
목적 : 본 연구는 뇌성마비 아동의 신체기능과 일상생활 향상을 위해 적용된 과제 중심 훈련 방법에 대해 정리하고 효과를 제시하고자 하였다. 연구방법 : 검색 기간은 2008년 1월부터 2020년 8월까지로 하였으며, 자료 검색을 위해 CINAHL, MEDLINE, PubMed의 데이터베이스를 이용하였다. 총 18편이 선정되었으며, PICO(Patient, Intervention, Comparison, Outcome) 방법을 적용하여 체계적으로 정리하였다. 과제 중심 훈련은 선행연구를 참고하여 운동학습 및 운동조절 이론의 전략인 과제(Task), 실행(Practice), 피드백(Feedback)으로 분류하여 제시하였다. 결과 : 그 결과 13편의 연구가 운동기술 영역에서 유의한 결과를 보였으며, 그 중 2편의 연구에서 일상생활 영역에서 유의한 결과를 보였다. 과제는 개별 과제(discrete task)와 닫힌 과제(closed task) 형태가 가장 많이 사용되었다. 실행은 전체 실행(whole practice) 유형이 가장 많이 사용되었으며, 부분 실행(part practice), 차단 실행(blocked practice) 순으로 사용되었다. 마지막으로 피드백은 구체적으로 제시하지 않은 경우가 가장 많았으며, 외재적 피드백(extrinsic feedback)이 사용되었다. 결론 : 본 연구를 바탕으로 향후에는 뇌성마비 아동의 운동조절을 촉진하는 기술의 체계적인 선택과 구체적인 방법의 제시를 통하여 과제 중심 훈련이 임상에서 더욱 효과적으로 사용될 수 있을 것이라 기대한다.
이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.
본 연구는 '미적 과학교육 연구'를 서지분석을 통해 그 동향을 파악한 후, 앞으로 이 분야의 연구에 대한 시사점을 제공하는 것을 목표로 한다. 이를 위해 Clarivate Analytics에서 제공하는 Web of Science 웹데이터베이스의 검색기능을 활용하여 미적 과학교육 연구 100편을 추출하였으며, 이를 R 프로그램의 Bibliometrix 패키지를 이용하여 상세 서지분석을 실시하였다. 분석 결과, 1993년부터 2022년까지 평균적으로 논문의 수가 증가하는 추세였으며, 관련 논문이 출판되는 학술지는 지역적으로 균등히 분포되어 있는 양상을 보였다. 키워드 분석, 상위 인용수를 가지고 있는 논문, 저자 협력 네트워크, 문헌 공동 인용 네트워크 등을 통해 살펴본 결과, 과학교육에서 미적 측면은 과학교육에서 예술을 통합하여 미적 경험을 유도하는 범주, 과학의 미적 측면에서 '형태의 미'와 '정서적 반응'을 활용한 범주로 구분 지을 수 있었다. 본 연구를 통해 도출한 시사점은 다음과 같다. 첫째, 미래 과학교육에서 강조하는 행위주체성과 능동적 학습을 실현하기 위해 미적 과학교육 연구가 활발히 수행되어야 한다. 둘째, 과학의 '형태의 미'를 과학교육에 좀 더 활용하여 과학교육에 대한 새로운 접근법을 개발할 필요가 있다. 셋째, 과학의 미적 측면은 교사, 예비교사, 학생의 과학의 본성에 대한 인식을 변화시킬 수 있다. 넷째, 과학의 미적 측면에 대한 교사, 학생, 예비교사 등을 대상으로 한 광범위한 인식조사를 통해 과학교육에서 미적 측면을 활용하는데 있어 시사점을 도출하여야 한다. 본 연구는 미적 과학교육 연구의 전체적인 분석 자료를 제공했다는 점에서 의미가 있다.
본 연구는 국내 간호대학생에게 적용한 플립러닝 교수법의 효과에 관한 연구를 체계적 고찰을 통해 통합적으로 규명하기 위한 메타분석연구이다. 자료수집은 2022년 11월 20일에서 12월 20일까지 코크란 연합의 체계적 고찰 보고지침을 준수하여 진행하였다. 국내 데이터베이스를 통해 검색된 논문은 RISS 72건, KISS 11건, Dbpia 46건 총 129편이었으며, 중복논문 제거 및 선정기준에 따라 최종 9편의 연구를 선정하였다. 국내 간호대학생을 대상으로 플립러닝 수업을 적용한 결과 플립러닝이 간호대학생의 비판적 사고성향 0.91(Z=8.36, p<.001), 학업적 자기효능감 0.35(Z=2.62, p=.009), 자기주도적 학습능력 0.81(Z=6.53, p<.001), 학업성취도 0.60(Z=5.18, p<.001), 자기효능감 0.66(Z=4.79, p<.001) 향상에 효과적인 것으로 나타났다. 본 연구결과를 토대로 플립러닝은 국내 간호교육 현장에 적용 가능한 효과적인 교수법임을 확인하였고, 플립러닝 수업설계 방향성에 객관적인 근거를 제시하였으며, 향후 플립러닝에 긍정적인 효과를 주는 다양한 결과 변인들의 효과를 통합적으로 분석하는 반복연구를 제언한다.
항만에서 하역을 수행하는 크레인 운전 훈련은 항만과 흡사한 환경에서 실제 크레인으로 훈련하는 것이 가장 바람직하지만, 시공간의 제약과 비용적인 문제가 있다. 이런 제한을 극복하기 위해 VR(Virtual Reality)을 기반으로 한 크레인 훈련 프로그램과 관련 장치가 많은 관심을 받고 있다. 본 논문에서는 HMD 상에서 동작하는 VR 기반의 항만 크레인 시뮬레이터를 설계하고 구현하였다. 본 논문에서 개발한 시뮬레이터는 HMD에서 동작하는 크레인 시뮬레이터 프로그램과 피교육자의 크레인 운전 입력을 처리하는 IoT 운전 단말기, 그리고 피교육자의 훈련 정보를 저장하는 트레이닝 서버로 구성된다. 시뮬레이터 프로그램은 Unity3D로 구현한 VR 기반의 크레인 훈련 시나리오를 제공하고, 아두이노 기반으로 개발한 IoT 운전 단말기는 2개의 컨트롤러로 구성되어, 사용자의 운전 조작을 HMD로 전달한다. 특히, 본 논문의 크레인 시뮬레이터는 트레이닝 서버를 도입하여 교육자별 환경설정 값, 진도 및 훈련 시간, 운전 경고 상황에 대한 정보를 데이터베이스화하였다. 이러한 서버 이용을 통해, 피교육자는 좀 더 편리한 환경에서 시뮬레이터 활용이 가능하고, 학습 정보 제공에 의한 향상된 교육 효과를 기대할 수 있다.
본 연구는 단행본, 학술지, 보고서 등 다양한 종류의 발간물로 구성된 연구보고서의 참고문헌 데이터베이스를 효율적으로 구축하기 위한 것으로 딥러닝 언어 모델을 이용하여 참고문헌의 자동추출 성능을 비교 분석하고자 한다. 연구보고서는 학술지와는 다르게 기관마다 양식이 상이하여 참고문헌 자동추출에 어려움이 있다. 본 연구에서는 참고문헌 자동추출에 널리 사용되는 연구인 메타데이터 추출과 더불어 참고문헌과 참고문헌이 아닌 문구가 섞여 있는 환경에서 참고문헌만을 분리해내는 원문 분리 연구를 통해 이 문제를 해결하였다. 자동 추출 모델을 구축하기 위해 특정 연구기관의 연구보고서 내 참고문헌셋, 학술지 유형의 참고문헌셋, 학술지 참고문헌과 비참고문헌 문구를 병합한 데이터셋을 구성했고, 딥러닝 언어 모델인 RoBERTa+CRF와 ChatGPT를 학습시켜 메타데이터 추출과 자료유형 구분 및 원문 분리 성능을 측정하였다. 그 결과 F1-score 기준 메타데이터 추출 최대 95.41%, 자료유형 구분 및 원문 분리 최대 98.91% 성능을 달성하는 등 유의미한 결과를 얻었다. 이를 통해 비참고문헌 문구가 포함된 연구보고서의 참고문헌 추출에 대한 딥러닝 언어 모델과 데이터셋 유형별 참고문헌 구축 방향을 제안하였다.
최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.