화자인식은 자동 음성시스템에서 중요한 기능을 담당하며, 최근 휴대용 기기의 발전 및 음성 기술, 오디오 콘텐츠 분야 등이 계속해서 확장됨에 따라 화자인식 기술의 중요성은 더구나 부각 되고 있다. 이전의 화자인식 연구는 음성 파일을 기반으로 화자가 누구인지 자동으로 판정 및 정확도 향상을 위한 목표를 가지고 진행되었다. 한편 말투는 중요한 사회언어학적 소재로 사용자의 사회적 환경과 밀접하게 관련되어 있다. 추가로 화자의 말투에 사용되는 종결어미는 문장의 유형을 결정하거나 화자의 의도, 심리적 태도 또는 청자에 대한 관계 등의 기능과 정보를 가지고 있다. 이처럼 종결어미의 활용형태는 화자의 특성에 따라 다양한 개연성이 있어 특정 미확인 화자의 종결어미의 종류와 분포는 해당 화자를 인식하는 것에 도움이 될 것으로 보인다. 기존 텍스트 기반의 화자인식에서 말투를 고려한 연구가 적었으며 음성 신호를 기반으로 한 화자인식 기법에 말투 정보를 추가한다면 화자인식의 정확도를 더욱 높일 수 있을 것이다. 따라서 본 연구의 목적은 한국어 화자인식의 정확도를 개선하기 위해 종결어미로 표현되는 말투(speech style) 정보를 활용한 방법을 제안하는 것이다. 이를 위해 특정인의 발화 내용에서 등장하는 종결어미의 종류와 빈도를 활용하여 벡터값을 생성하는 문장 시퀀싱이라는 방법을 제안한다. 본 연구에서 제안한 방법의 우수성을 평가하기 위해 드라마 대본으로 학습 및 성능평가를 수행하였다. 본 연구에서 제안한 방법은 향후 실존하는 한국어 음성인식 서비스의 성능 향상을 위한 수단으로 사용될 수 있으며 지능형 대화 시스템 및 각종 음성 기반 서비스에 활용될 것을 기대한다.
원격 탐사 기반의 식생지수들은 광합성을 조절하는 식물생리적 특성과 경험적 상관관계를 보이며, 여러공간 규모에서의 총일차생산량(GPP) 추정에 활용되고 있다. 하지만 시간 해상도가 높아질수록 식생지수를 이용한 GPP 추정의 불확실성이 커지는 한계가 존재한다. 또한 식생지수 관련 분석에 주로 사용되는 에디공분산법을 이용하여 추정한 GPP 역시 실제 측정한 순생태계교환량(NEE)을 GPP와 생태계 호흡(RE)으로 배분하는 데 사용하는 방법에 따라 추정값이 달라지는 불확실성이 존재한다. 본 연구에서는 플럭스 타워가 설치된 네 곳의 농림생태계를 대상으로 근지표에서 관측한 식생의 분광 특성을 이용한 다양한 식생지수를 계산하였고, 이를 다양한 시간 해상도에서 GPP 추정에 적용가능한 지를 분석하였다. 동시에 이를 이용하여 NEE 배분 방법의 불확실성을 평가하였다. 비교에 사용한 정규식생지수, 개량식생지수, 적외반사식생지수(NIRv)에 비해 적외반사식생지수와 광합성유효광(PAR)을 결합한 NIRvP이 식생 및 지형 조건에 의한 공간 이질성으로 인해 관측지에 따라 약간의 차이가 나타났지만, 농경지와 산림에서 모두 30분과 일 단위 시간 해상도에서 GPP와 높은 상관성(r2 = 0.63, 0.68)을 보였다. 또한 기존 KoFlux 표준 NEE 배분방법에 비해 기계학습 기반의 NEE 배분 방법을 적용할 경우, 산림에서 30분 단위의 GPP와 NIRvP 사이의 상관성이 향상되었지만, 일 단위에는 그 차이가 크지 않았다. 하지만 광조건 이외에 다른 요인에 의해 광합성이 제한되는 경우 NIRvP와 GPP 간의 상관성이 떨어져 NIRvP를 이용해 실제 배분 결과를 직접 평가하긴 어려웠으며, 주로 광 조건에 의해 광합성이 제한되는 흐린 날의 경우 NEE 배분 정확도를 평가할 수 있는 가능성이 존재하였다. 그러나 높은 시간해상도의 Vis 기반의 GPP 추정이 의미를 가지려면, VIs와 GPP간의 경험적 관계를 넘어서는 시스템 사고 및 자기-조직화와 관련된 복잡계 기반의 분석 방법이 요구된다.
구름은 대기 중에 떠 있는 작은 물방울이나 얼음 알갱이들 또는 혼합물 등으로 구성되며 지구 표면의 약 2/3를 덮고 있다. 위성영상내에서의 구름은 일부 다른 지상 물체 또는 지표면과 유사한 반사도 특성으로 인해 구름과 구름이 아닌 영역을 분리하는 구름탐지는 매우 어려운 작업이다. 특히 뚜렷한 특징을 가지는 두꺼운 구름과 달리 얇은 반투명 구름은 위성영상내에서 구름과 배경의 대비가 약하고 지표면과 혼합되어져 나타나기 때문에 대부분 구름탐지에서 쉽게 놓쳐지고 많은 어려움을 주는 대상으로 작용한다. 이러한 구름탐지의 반투명 구름의 한계점을 극복하기 위해, 본 연구에서는 머신러닝 기법(Random Forest [RF], Convolutional Neural Networks [CNN])을 활용하여 반투명 구름을 중점으로 한 구름탐지 연구를 수행하였다. Reference자료로는 MOderate Resolution Imaging Spectroradiometer (MODIS)에서 제공하는 MOD35자료에서 Cloud Mask와 Cirrus Mask를 활용하였으며 반투명 구름 픽셀을 고려한 모델 훈련을 위해 훈련 데이터의 픽셀 비율을 구름, 반투명 구름, 청천이 약 1:1:1이 되도록 구성하였다. 연구의 정성적 비교 결과, RF와 CNN 모두 반투명 구름을 포함한 다양한 형태의 구름 등을 잘 탐지하였고, RF 모델 결과와 CNN 모델 결과를 혼합한 RF+CNN경우에는 개별 모델의 한계점을 개선시키며 구름탐지가 잘 수행되어진 것을 확인하였다. 연구의 정량적 결과 RF의 전체 정확도(OA) 값은 92%, CNN은 94.11%를 보였고, RF+CNN은 94.29%의 정확도를 보였다.
기후변화에 따른 집중호우, 태풍 등의 발생빈도의 증가로 인하여 댐 운영의 고도화가 요구되고 있다. 일반적으로 댐 운영의 경우 강우예측, 강우-유출, 홍수추적 등 다양한 수리수문학적 요소들을 반영하여 수행되나 기 계획된 특정 규칙에 기반한 댐 운영 모형의 경우, 때때로 개별 모듈들의 불확실성과 복합적인 인자들로 인하여 댐의 방류량을 능동적으로 제어하는데 제약이 있을 수 있다. 본 연구는 남강댐 직하류 홍수피해 예방을 위하여 댐의 방류량 결정 등 효율적인 댐 운영을 지원하기 위해 딥러닝 기반 LSTM (Long Short-Term Memory) 모형을 구축하고, 선행시간별 댐직하류 수위예측 정확도를 분석하는 것을 목적으로 한다. LSTM 모형의 입력자료는 댐 운영에 사용되는 기초자료 및 하류 장대동 수위관측소의 수위 자료를 시 단위로 2009년부터 2021년 7월까지 수집하였다. 2009년부터 2018년 자료는 모형의 학습과 검증 및 2019년부터 2021년 7월 자료는 선행시간을 7개(1 h, 3 h, 6 h, 9 h, 12 h, 18 h, 24 h)로 구분하여 관측 수위와 예측 수위를 비교·분석하였다. 그 결과, 선행시간 1시간의 예측결과는 평균적으로 MAE가 0.01 m, RMSE가 0.015 m, NSE가 0.99 로 관측 수위에 매우 근접한 예측 결과를 나타내었다. 또한, 선행시간이 길어질수록 예측 정확도는 근소하게 감소하였지만, 관측 수위의 시간적 패턴을 유사하게 안정적으로 예측하는 것으로 분석되었다. 따라서 수리수문학적 비선형의 복잡한 자료간의 특징을 자동으로 추출하여 예측 자료를 생산하는 LSTM 모형은 댐 방류량 의사결정에 있어 활용이 가능할 것으로 판단된다.
국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.
일화기억은 핵심 이벤트와 그에 연합된 맥락으로 구성된다. 해마와 해마 주변 영역이 일화기억의 부호화에서 맥락을 표상하는 역할에 관해 연구되어왔지만, 시공간적 맥락 외에 다양한 맥락-특이적 정보들에 대한 표상에 관한 연구는 많지 않다. 본 연구에서는 고해상도 자기기능공명기법을 이용하여 여러 맥락정보(예, 육하원칙 - 누가, 왜, 무엇을 언제, 어디서, 어떻게)의 부호화에 관여하는 내측두엽 및 대뇌피질 신경연결성의 특징을 탐색하였다. 참가자들은 두 명의 얼굴과 하나의 사물로 구성된 실험 이벤트를 보면서 여섯가지 맥락 부호화 과제를 수행하였다. 휴지기 기능적 자기공명영상 정보를 활용해 내측두엽의 세부 영역을 기능적으로 구분하였고 맥락 기억 과제별 기능적 신경연결성 네트워크를 탐색하였다. 일반선형화 모델 분석을 통해 시공간적 맥락정보를 처리할 때보다 사회적, 행동적, 의도 맥락을 연합할 때 내측두엽의 세부영역, 전전두엽, 하부두정엽 영역이 유의미하게 증가한 활성화를 보이며 관여함을 확인하였다. 나아가 이 영역들과 내측두엽 영역이 맥락조건간 차이에 관여하는 기능적 연결성 특징을 탐색하기 위하여 맥락부호화 과제를 수행하는 동안의 해마세부영역들과 전전두엽, 하부두정엽 등 간의 과제기반 기능적 연결성 정보들을 다변량 패턴분석의 주요입력변수로 선정하였고, 기계학습을 통해 맥락 조건 간 연결성 패턴분류를 시도하였다. 네트워크 패턴분류에서도 시공간 맥락 조건과 각 사회적, 행동적, 의도 맥락처리 조건 간에는 기능적 연결성의 차이가 두드러졌다. 본 연구결과를 통해 일화기억에서 특정 맥락을 처리하는 신경학적 기제의 특성과 맥락 조건 간 차이를 제시하였다.
인공지능의 발전과 함께 딥러닝을 활용한 인공지능 광학문자인식 기법 (Artificial Intelligence powered Optical Character Recognition, AI-OCR) 의 등장은 기존의 이미지 처리 기반 OCR 기술의 한계를 넘어 다양한 형태의 이미지로부터 여러 언어를 높은 정확도로 읽어낼 수 있는 모델로 발전하였다. 특히, AI-OCR은 인력을 통해 대량의 다양한 서류 처리 업무를 수행하는 금융업에 있어 그 활용 잠재력이 크다. 본 연구에서는 금융권내 활용을 위한 AI-OCR 모델의 구성과 설계를 제시하고, 이를 효율적으로 적용하기 위한 플랫폼 구축 및 활용 사례에 대해 논한다. 금융권 특화 딥러닝 모델을 만듦에 있어 금융 도메인 데이터 사용은 필수적이나, 개인정보보호법 이하 실 데이터의 사용이 불가하다. 이에 본 연구에서는 딥러닝 기반 데이터 생성 모델을 개발하였고, 이를 활용하여 AI-OCR 모델 학습을 진행하였다. 다양한 서류 처리에 있어 유연한 데이터 처리를 위해 단계적 구성의 AI-OCR 모델들을 제안하며, 이는 이미지 전처리 모델, 문자 탐지 모델, 문자 인식 모델, 문자 정렬 모델 및 언어 처리 모델의 선택적, 단계적 사용을 포함한다. AI-OCR 모델의 배포를 위해 온프레미스(On-Premise) 및 프라이빗 클라우드(Private Cloud) 내 GPU 컴퓨팅 클러스터를 구성하고, Hybrid GPU Cluster 내 컨테이너 오케스트레이션을 통한 고효율, 고가용 AI-OCR 플랫폼 구축하여 다양한 업무 및 채널에 적용하였다. 본 연구를 통해 금융 특화 AI-OCR 모델 및 플랫폼을 구축하여 금융권 서류 처리 업무인 문서 분류, 문서 검증 및 입력 보조 시스템으로의 활용을 통해 업무 효율 및 편의성 증대를 확인하였다.
본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.
중적외선(mid-wave infrared, MWIR) 영상은 피복 및 객체의 온도를 파악할 수 있어 환경, 국방 등 다양한 분야에서 핵심 데이터로 사용된다. KOMPSAT-3A 위성은 타 위성에 비해 높은 공간해상도의 MWIR 영상을 제공하지만, 광학(electro-optical, EO) 영상에 비해 상대적으로 낮은 시인성을 가져 활용성의 확대에 어려움을 겪는다. 이에 본 연구에서는 KOMPSAT-3A 전정색(panchromatic, PAN) 영상의 윤곽 정보를 기반으로 시인성이 높은 MWIR 융합 영상을 제작하고자 한다. 먼저, 이종 센서에서 취득된 PAN 영상과 MWIR 영상의 상대 기하오차를 제거하는 전처리를 수행하고, 딥러닝 기반 윤곽 정보 추출 기술인 Pixel difference network (PiDiNet)의 사전 학습 모델을 이용하여 PAN 영상에 대한 윤곽 정보를 추출한다. 이후 전처리된 MWIR 영상과 추출된 윤곽 정보를 중첩하여 객체 경계면이 강조된 MWIR 융합 영상을 제작한다. 제안 방법을 이용하여 서로 다른 세 지역에 대한 MWIR 융합 영상을 제작하였으며, 이를 시각적으로 분석하였다. 본 기법을 통해 제작된 MWIR 융합 영상은 지형 및 지물의 경계면이 강조되어 시인성이 개선되었으며, 세부적으로 관심 지역에 대한 열 정보를 전달할 수 있었다. 특히, MWIR 융합 영상에서는 저해상도의 원본 MWIR 영상에서 식별할 수 없었던 비행기, 선박 등의 객체를 육안으로 판독할 수 있었다. 본 연구는 가시적인 정보와 열 정보를 동시에 고려할 수 있는 단일 영상 제작 방법론을 제시하였으며, 이는 MWIR 영상의 활용성 확대에 이바지할 수 있을 것으로 사료된다.
본 연구에서는 Sentinel-1 synthetic aperture radar 영상을 활용하여 딥러닝 모델인 Swin Transformer로 국내 농업용 저수지의 수표면적을 모니터링 하는 방법을 제시한다. Google Earth Engine 플랫폼을 이용하여 70만톤 급, 90만톤급, 150만톤급 저수지 7개소에 대한 2017년부터 2021년 데이터셋을 구축하였다. 저수지 4개소에 대한 영상 1,283장에 대해서 셔플링(suffling) 및 5-폴드(fold) 교차검증 기법을 적용하여 모델을 학습하였다. 시험평가 결과 모델의 윈도우 크기를 12로 설정한 Swin Transformer Large 모델은 각 폴드에서 평균적으로 99.54%의 정확도와 95.15%의 mean intersection over union (mIoU)을 기록하여 우수한 의미론적 분할 성능을 보여주었다. 최고 성능을 보여준 모델을 나머지 3개소 저수지 데이터셋에 적용하여 성능을 검증한 결과, 모든 저수지에서 정확도 99% 및 mIoU 94% 이상을 달성함을 확인했다. 이러한 결과는 Swint Transformer 모델이 국내의 농업용 저수지의 수표면적 모니터링에 효과적으로 활용될 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.