• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.038 seconds

기계학습 모델 공격연구 동향: 심층신경망을 중심으로

  • Lee, Seulgi;Kim, KyeongHan;Kim, Byungik;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2019
  • 기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.

Classifier System for Real time Adaptive Behavior Based on Rule Clustering (룰 클러스터링에 의한 실시간 적응행동 분류자 시스템)

  • 황철민;김지윤;김현영;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.47-50
    • /
    • 2003
  • 기계학습의 한 종류인 분류자 시스템은 간단한 문제에 대하여 실시간 처리와 온라인 학습이 가능하다. 그러나 복잡한 환경에서는 빠른 적응이 힘들다. 본 논문에서는 복잡한 환경에서 분류자 시스템의 적응 성능을 개선함으로써 실시간이 가능하도록 전체 환경을 분류하고 각기 다른 룰 셋을 이용하는 룰 클러스터링에 의한 분류자 시스템을 제안한다 환경을 상황에 따라 나눔으로써 전체 환경이 변화하였을 경우 각 상황에 따른 변화에 대해서만 추가적으로 학습함으로써 탐색 공간을 줄여 학습 시간을 감소시킨다. 제안한 시스템은 분류자 시스템 중 ZCS을 이용하여 로봇축구 시스템에 적용하여 기존의 방법과 그 성능을 비교 검토한다.

  • PDF

RLVisualizer: An application for Visualizing Trajectories of Reinforcement Learning Problem (RLVisualizer: 강화학습의 문제의 학습궤적을 시각화하는 응용)

  • Chung, TaeChoong;Tuyen, Le Pham
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.13-14
    • /
    • 2017
  • 딥러닝을 비롯한 전반적인 인공지능에 대한 관심이 뜨겁다. 특정 영역에 영향력을 주었던 과거와 다르게 인공지능의 영향력은 인류문명 전체에 변화를 주고 있다. 예술 분야도 영향을 받고 있는데, 그 중 한 분야는 과학적 실험의 자료를 어떻게 시각화 하느냐의 문제를 풀다가 나오기도 한다. 자료를 시각화하는 것은 실험과정 및 결과를 과학자 및 독자들에게 쉽게 전달하기위한 것이다. 그런데, 그 시각화된 영상 중에는 미적인 아름다움이 있는 경우가 있다. 본 연구자는 강화학습의 정책이 어떻게 개선되고 있는지 보기위해 강화학습의 과정을 시각화 해서 검증하는 시도를 했다. 그 과정에서 만든 자료가 미술적인 관점에서도 아름다움이 있는 작품을 만들 수 있다는 확신이 들어서 강화학습용 디지탈예술 도구를 만들어 작품을 생성해 보았다.

  • PDF

Performance Improvement of General Regression Neural Network by Reducing Dimensionality of Independent Variables (독립변수의 차원 감소에 의한 일반회귀 신경망의 성능개선)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.533-541
    • /
    • 2000
  • 본 논문에서는 독립변수들의 차원을 감소시켜 일반회귀 신경망의 성능을 개선하는 방법을 제안하였다. 제안된 방법에서는 적응적 학습 알고리즘의 주요성분분석 기법을 이용하여 독립변수 패턴의 특징을 추출하고 이를 일반회귀 신경망의 학습데이터로 이용하였다. 이는 주요성분분석 기법이 가지는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 일반회귀 신경망이 가지는 제약을 해결하기 위함이다. 제안된 기법의 일반회귀 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 일반회귀 신경망에 의한 결과와 비교할 때 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 그리고 커널함수의 평활요소 설정 면에서도 우수한 특성이 있음을 확인할 수 있었다.

  • PDF

Incremental Conceptual Clustering Using Modified Category Utility (변형된 Category Utility를 이용한 점진 개념학습)

  • Kim Pyo Jae;Choi Jin Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.193-197
    • /
    • 2005
  • 점진적 개념 학습 알고리즘인 COBWEB은 클래스 정보가 주어지지 않은 사례들(instances)을 분류하기 위하여 사례의 속성과 값에 근거하여 학습하며 각 노드가 유사한 사례들의 집합인 클래스에 해당하는 분류 트리를 생성하는 알고리즘이다. 유사한 사례들을 같은 클래스로 분류하기 위한 기준으로 category utility가 사용되며 이는 클래스 내부의 유사도와 클래스간의 차이점을 최대화하는 방향으로 클래스를 분류한다 기존의 COBWEB에 사용되는 category utility는 클래스 사이즈와 예측 정확성 사이의 tradeoff 관계로 볼 수 있으며, 이로 인하여 예측 정확성은 약간 감소하나 클래스 사이즈가 커지는 방향으로 학습이 진행 될 수 있는 편향성(bias)를 가지고 있다. 이는 분류 트리에 불필요한 클래스 노드들(spurious nodes)을 생성하게 하여 학습 결과인 클래스 개념을 이해하는뎨 어렵게 한다. 본 논문에서는 클래스와 그에 속하는 사례들의 속성-값 분포를 고려하여 클래스와 속성의 연관성에 비례한 가충치를 더한 변형된 category utility를 제안하고, dataset에 대한 실험을 통하여 제안된 category utility가 기존의 큰 클래스 사이즈를 선호하는 bias를 완화시킴을 보이고자 한다.

  • PDF

Performance Comparison Between Neural Network Model and Statistical Models (통계적 모델과 신경회로망 모델의 성능 비교에 관한 연구)

  • Han, Seung-Soo;Kim, In-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2401-2403
    • /
    • 2000
  • 시스템의 특성을 이해하고 신뢰성 있는 제어를 위해서는 시스템에 대한 정확한 모델을 필요로 한다. 이러한 목적을 위해서 많은 연구자들에 의한 다양한 방법의 모델링 방법이 계속되어 연구되어지고 있다. 현재 많이 사용하는 모델링 방법 중에는 통계적 기법을 이용하는 것, first principle 방법을 이용하는 것, 지능형 기법을 이용하는 방법 등이 있다. 본 연구에서는 통계적 방법인 fractional factorial 방법을 이용한 모델, Taguchi 방법을 이용한 모델, 그리고 지능형 방법인 신경회로망을 이용한 모델의 3가지 모델을 사용해서 각 모델의 학습오차와 예측오차 등의 특성을 비교하였다. 모델에 사용된 데이터는 비선형 시스템인 플라즈마 화학 증착 장비(Plasma-Enhnaced Chemical Vapor Deposition : PECVD)에 의해 증착된 산화막 실험 데이터이다. 각 모델에 대해서 PECVD 데이터를 사용하여 모델을 만들었을 때 각 모델의 학습오차와 학습오차 변위, 그리고 예측오차와 예측오차변위를 조사하였다. 세가지 모델 모두 학습오차가 예측오차보다 작았으며 변위 또한 학습오차변위가 예측오차변위보다 작았다. 본 연구 결과는 일반적으로 신경회로망에 의한 오차가 다른 통계적인 방법에 의한 오차보다 작음을 보여준다.

  • PDF

Noise-Reduction of Student's Learning Data using k-NN Method (k-NN 기법을 이용한 학습자 데이터의 노이즈 선별 방법)

  • Yun, Tae-Bok;Lee, Ji-Hyeong;Jeong, Yeong-Mo;Cha, Hyeon-Jin;Park, Seon-Hui;Kim, Yong-Se
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.135-138
    • /
    • 2006
  • 사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

  • PDF

Financial Application of Integrated Optimization and Machine Learning Technique (최적화와 기계학습 결합기법의 재무응용)

  • Kim, Kyoung-jae;Park, Hoyeon;Cha, Injoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF

A Research on Using Wasserstein Distance as a Loss Function in Self-Supervised Learning (자기지도 학습에서 와서스타인 (Wasserstein) 거리의 손실함수로의 이용가능성 연구)

  • Koo, Inhwa;Chae, Dong-Kyu
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.628-629
    • /
    • 2022
  • 딥러닝의 높은 예측 정확도를 위해서는 많은 양의 학습 데이터가 필요하다. 그러나 실세계에서 많은 양의 레이블이 붙은 데이터를 구하는 것은 어렵고 많은 비용이 든다. 때문에 레이블이 없이도 양질의 표현 학습이 가능한 자기지도학습이 각광을 받고 있다. 와서스타인 거리는 생성모델에도 쓰이지만 의사 레이블 (pseudo label) 을 만들어 레이블이 없는 데이터들을 분류 하는데도 좋은 성능을 보이고 있다. 따라서. 본 연구는 와서스타인 거리를 자기지도학습에 접목시키는 방법을 제안한다. 실험을 통해 연구의 가능성을 보인다.

Semi-supervised learning based malware detection technique (준지도 학습 기반의 멀웨어 탐지 기법)

  • Yu-Ran Jeon;Hye Yeon Shim;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.254-257
    • /
    • 2024
  • 5G 통신과 인공지능 기술이 발전하고, 사물인터넷 기기의 수가 증가함에 따라 종래의 정보보호체계를 우회하는 지능적인 사이버 공격이 증가하고 있다. 그러나, 종래의 기계학습 기반 멀웨어 탐지 방식은 이미 알려진 멀웨어만 탐지할 수 있으며, 새로운 멀웨어는 탐지가 어렵거나, 기존의 알려진 멀웨어로 잘못 분류되는 문제가 있다. 본 연구에서는 비지도학습을 사용하여 알려지지 않은 멀웨어를 탐지하고, 새롭게 탐지된 멀웨어를 새로운 라벨로 분류하여 재학습하는 준지도 학습 기반의 멀웨어 탐지 기법을 제안한다. 다양한 데이터 환경에서 알려지지 않은 멀웨어 데이터가 탐지 모델로 입력될 때 제안한 방식의 성능을 평가했다. 실험 결과에 따르면 제안한 준지도 학습 기반의 멀웨어 탐지 방법은 종래의 방식 대비 정확도를 약 16% 개선했다.