• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.036 seconds

NEW ANTIDEPRESSANTS IN CHILD AND ADOLESCENT PSYCHIATRY (소아청소년정신과영역의 새로운 항우울제)

  • Lee, Soo-Jung
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2003
  • Objectives:As increasing number of new antidepressants have been being introduced in clinical practice, pharmacological understanding has been broadened. These changes mandate new information and theories to be incorporated into the treatment process of children with depressive disorders. In light of newly coming knowledge, this review intended to recapitulate the characteristics of new antidepressants and to consider the pivotal issues to develope guidelines for the treatment of depression in childhood and adolescence. Methods:Searching the Pub-Med online database for the articles with the key words of 'new', 'antidepressants' and 'children' ninety-seven headings of review articles were obtained. The author selected the articles of pertinent subjects in terms of either treatment guideline or psychopharmacology of new antidepressants. When required, articles about the clinical effectiveness of individual antidepressants were separatedly searched. In addition, the safety information of new antidepressants was acquired by browsing the official sites of the United States Food and Drugs Administration and Department of Health and Human Services. Results:1) For the clinical course, treatment phase, and treatment outcome, the reviews or treatment guidelines adopted the information from adult treatment guidelines. 2) Systematic and critical reviews unambiguously concluded that selective serotonin reuptake inhibitors(SSRIs) excelled tricyclic antidepressants( TCAs) for both efficacy and side effect profiles, and were recommend for the first-line choice for the treatment of children with depressive disorders. 3) New antidepressants generally lacked treatment experiences and randomized controlled clinical trials. 4) SSRIs and other new antidepressants, when used together, might result in pharmacokinetic and/or pharmacodynamic drug-to-drug interaction. 5) The difference of the clinical effectiveness of antidepressants between children and adults should be addressed from developmental aspects, which required further evidence. Conclusion:Treatment guidelines for the pharmacological treatment of childhood and adolescence depression could be constructed on the basis of clinical trial findings and practical experiences. Treatment guidelines are to best serve as the frame of reference for a clinician to make reasonable decisions for a particular therapeutic situation. In order to fulfill this role, guidelines should be updated as soon as new research data become available.

  • PDF

Effects of Ginseng and Its Saponins on Experimental Amnesia in Mice and on Cell Cultures of Neurons (인삼 및 인삼 사포닌이 쥐의 건망증 및 신경세포배양에 미치는 영향)

  • Saito Hiroshi;Nishiyama Nobuyoshi;Iwai Akihiko;Kawajiri Shinichi;Himi Toshiyuki;Sakai Toshimi;Fukunaka Chizu
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.92-98
    • /
    • 1988
  • The present study was performed to find the effects of ginseng and its saponins. which is written in Chung Yao Ta Tsu Tien as anti-amnesia in its chief indication. on experimental amnesia in mice. In the step through test. ginsenoside $Rb_1\;(GRb_1)\;and\;GRg_1$ facilitated the registration of memory and antagonized the electroconvulsive shock (ECS)-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory. In the step down test. $GRb_1\;GRb_2\;and\;GRg_1$ antagonized the ECS-induced inhibition of the retention of memory. Moreover. $GRg_1$ antagonized the EtOH-induced inhibition of the retrieval of memory and facilitated the acquisition of short term memory. In the shuttle hox and lever press tests. they have no effects on acquisition and retrieval of memory. except $GRb_1\;GRb_1$ depressed the retrieval of conditioned avoidance response in the shuttle box test. After the end of four tests. the effects of these orally administered drugs on sedative. analgesic. antipyretic and anticonvulsant actions. and on spontaneous and exploratory movements were tested in doses of less than 500mg/kg. but they had none of these effects. Present study may indicate that $GRg_1$ had effects on the retrieval of memory and on the acquisition process of learning response. The recent research on the role of NGF for the survival. regeneration and regulation of brain in adult animals. indicated the importance of NGF on dementia and amnesia. During our research on the specificity of the neurite out growth induced by NGF. we found that the effect of NGF was potentiated by $GRb_1$ in organ cultures of chick embryonic dorsal root ganglia. Then. the effect of $GRb_1$ on neuronal cell survivalin cell culture system was studied. $GRb_1$ potentiated the NGF-mediated increase of neurofilaments in cell cultures of chick embryonic sensory and sympathetic neurons. NGF with $GRb_1$ also showed a tendency to increase the number of surviving neurons of rat embryonic cerebral cortex. NGF increased choline acetyl transferase activity in cell cultures of rat embryonic septum area neurons. but $GRb_1$ did not potentiate NGF activity in cell cultures of rat embryonic septum area neurons. Present study may indicate that $GRb_1$ plays an important role for the survival or regeneration of neurons in the brain.

  • PDF

The Development of 'Korea's Science Education Indicators' (한국의 과학교육 종합 지표 개발 연구)

  • Hong, Oksu;Kim, Dokyeong;Koh, Sooyung;Kang, Da Yeon
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.471-481
    • /
    • 2021
  • The importance of science education for cultivating the competencies required by an intelligent information society is gradually being strengthened. The government's roles and responsibilities for science education are stipulated by laws and policies in Korea. In order to systematically support science education, continuous monitoring of related policies is essential. This study aims to develop indicators that can be used to systematically and continuously monitor the national policies on science education in Korea. To achieve this goal, we first derive the framework for the indicators that has two dimensions (learner and science education context) and three categories (input, process, and outcome) from literature reviews. In order to derive the components and subcomponents of the indicators, the contents of science education-related indicators developed in Korea or abroad were reviewed. In order to verify the suitability and validity of the framework and components of the initial indicators, a two-round Delphi method was conducted with 25 expert participants with five different professions in science education. Finally, three components of the 'input' category (student characteristics, teacher characteristics, and educational infrastructure), three components of the 'process' category (science curriculum implementation, science educational contents and programs implementation, and teacher professional development program implementation), and five components of the 'outcome' category (science competency, participation and action, affective achievement, cognitive achievement, and satisfaction) were derived. An instrument to collect data from students, teachers, and institutions was developed based on the components and subcomponents, and content validity and internal consistency of the instrument were analyzed. Korea's Science Education Indicators developed in this study can comprehensively measure the current status of science education and is expected to contribute to a more efficient and effective science education policy planning and implementation.

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Legal Issues on the Collection and Utilization of Infectious Disease Data in the Infectious Disease Crisis (감염병 위기 상황에서 감염병 데이터의 수집 및 활용에 관한 법적 쟁점 -미국 감염병 데이터 수집 및 활용 절차를 참조 사례로 하여-)

  • Kim, Jae Sun
    • The Korean Society of Law and Medicine
    • /
    • v.23 no.4
    • /
    • pp.29-74
    • /
    • 2022
  • As social disasters occur under the Disaster Management Act, which can damage the people's "life, body, and property" due to the rapid spread and spread of unexpected COVID-19 infectious diseases in 2020, information collected through inspection and reporting of infectious disease pathogens (Article 11), epidemiological investigation (Article 18), epidemiological investigation for vaccination (Article 29), artificial technology, and prevention policy Decision), (3) It was used as an important basis for decision-making in the context of an infectious disease crisis, such as promoting vaccination and understanding the current status of damage. In addition, medical policy decisions using infectious disease data contribute to quarantine policy decisions, information provision, drug development, and research technology development, and interest in the legal scope and limitations of using infectious disease data has increased worldwide. The use of infectious disease data can be classified for the purpose of spreading and blocking infectious diseases, prevention, management, and treatment of infectious diseases, and the use of information will be more widely made in the context of an infectious disease crisis. In particular, as the serious stage of the Disaster Management Act continues, the processing of personal identification information and sensitive information becomes an important issue. Information on "medical records, vaccination drugs, vaccination, underlying diseases, health rankings, long-term care recognition grades, pregnancy, etc." needs to be interpreted. In the case of "prevention, management, and treatment of infectious diseases", it is difficult to clearly define the concept of medical practicesThe types of actions are judged based on "legislative purposes, academic principles, expertise, and social norms," but the balance of legal interests should be based on the need for data use in quarantine policies and urgent judgment in public health crises. Specifically, the speed and degree of transmission of infectious diseases in a crisis, whether the purpose can be achieved without processing sensitive information, whether it unfairly violates the interests of third parties or information subjects, and the effectiveness of introducing quarantine policies through processing sensitive information can be used as major evaluation factors. On the other hand, the collection, provision, and use of infectious disease data for research purposes will be used through pseudonym processing under the Personal Information Protection Act, consent under the Bioethics Act and deliberation by the Institutional Bioethics Committee, and data provision deliberation committee. Therefore, the use of research purposes is recognized as long as procedural validity is secured as it is reviewed by the pseudonym processing and data review committee, the consent of the information subject, and the institutional bioethics review committee. However, the burden on research managers should be reduced by clarifying the pseudonymization or anonymization procedures, the introduction or consent procedures of the comprehensive consent system and the opt-out system should be clearly prepared, and the procedure for re-identifying or securing security that may arise from technological development should be clearly defined.