• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.03 seconds

Design and Implementation of Intelligent Tutoring Agent Platform Based on Collective Intelligence (집단지성기반 지능형 튜터링 에이전트 플랫폼 설계 및 구현)

  • Hong, Seong-Yong;Yi, Mun-Yong;Yoon, Wan-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.122-124
    • /
    • 2012
  • 최근 지식정보화 시대의 집단지성기반 교육 패러다임 변화는 큰 이슈로 떠오르고 있다. 특히 융합적 학문을 근원으로 창의성 계발과 아이디어를 중요시하고 있으며, 창조적 교육방식을 지향하고 있다. 그러나 다양한 영역에 지식전문가들과 학습자들 간에 지식을 공유하기 위한 플랫폼 공간이 제대로 제공되고 있지 못하며, 단순한 컨텐츠 제공을 목적으로 이러닝 서비스가 일부 제공되고 있는 것이 현실이다. 따라서 본 논문에서는 집단지성을 기반으로 지능형 튜터링 에이전트 시스템 설계를 제안하고, 새로운 에이전트(Agent) 개념을 통해 지식인들과 학습자들 간에 지식을 공유할 수 있을 뿐만 아니라 새로운 지식을 창출하고, 관리 및 유통할 수 있는 구조를 연구하였다. 또한 사용자들로부터 발생하는 데이터와 정보들을 자동 분석하여 지능적으로 학습상황에 대처할 수 있도록 설계하였으며, 튜터(Tutor)와 튜티(Tutee)간에 협력적인 학습 생태계가 형성될 수 있도록 하였다. 따라서 본 연구의 결과를 기반으로 미래 스마트 학습 플랫폼 발전에 많은 도움이 되길 기대한다.

Design of Multimedia Interface for Intelligent Tutoring System (지능형 교수 시스템 지원을 위한 멀티미디어 인터페이스의 설계)

  • Jung, Sang-Mok;Lee, Wan-Bok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.575-579
    • /
    • 2006
  • Intelligent Tutoring System is composed of tutoring module, student module and expert module. Among the modules, interface module is the most closely related to students and shares the biggest part of a learning system. Interface module is important for students both in e-learning system but also in intelligent tutoring system. But research on the improvement of interface hasn't been actively done. It studied the interface improvement that has very close relation to e-Learning students. It studied the main components of the existing interface and designed multimedia interface to correct the problems of previous researches. It also suggested the method to relate it to the intelligent tutoring system.

  • PDF

Development of Artificial Intelligence Education Program for Elementary Education Using Advance Organizer (선행조직자를 활용한 초등 인공지능 교육 프로그램 개발)

  • Lee, Dagyeom;Kim, Seong-won;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.219-221
    • /
    • 2022
  • 초등학교 인공지능(Artificial Intelligence, AI) 교육은 학교급별 특성과 수준을 고려하여 놀이 및 체험 활동 중심으로 계획되고 있다. 그러나 교육 현장의 수요 및 AI 리터러시 연구에서 AI 개념의 지도 필요성이 제시되고 있다. 초등학생에게 어렵고 생소한 AI 개념을 교육하기 위해 학습자의 발달 특성을 고려한 교수학습 전략이 필요하다. 선행조직자는 개념 지도 시 학습자의 인지적 부하를 줄일 수 있는 효과적인 교수학습 전략 중 하나로 이미 초등학생을 위한 인공지능 교재에 널리 사용되고 있다. 그러나 교재 분석 결과 선행조직자는 학생별 경험과 양육환경의 차이로 인해 선행조직자로서 기능하지 못할 가능성이 있다. 이를 해결하기 위해 본 연구는 초등학교에 널리 활용될 수 있는 선행조직자를 초등 교육과정에서 추출하여 AI 교육 프로그램을 개발하였다. 본 프로그램은 초등학교 5~6학년 AI 교육 내용 기준에서 AI 개념 요소를 추출하여 초등학교 1~4학년 교과 교육과정에서 선행조직자를 선정하였고 4차시의 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램이 초등학생의 효과적인 AI 개념을 학습과 AI 리터러시 향상에 도움이 될 것으로 기대된다.

  • PDF

Ordinal Depth Based Deductive Weakly Supervised Learning for Monocular 3D Human Pose Estimation (단안 이미지로부터 3D 사람 자세 추정을 위한 순서 깊이 기반 연역적 약지도 학습 기법)

  • Youngchan Lee;Gyubin Lee;Wonsang You
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.826-829
    • /
    • 2024
  • 3D 사람 자세 추정 기술은 다양한 응용 분야에서의 높은 활용성으로 인해 대량의 학습 데이터가 수집되어 딥러닝 모델 연구가 진행되어 온 반면, 동물 자세 추정의 경우 3D 동물 데이터의 부족으로 인해 관련 연구는 극히 미진하다. 본 연구는 동물 자세 추정을 위한 예비연구로서, 3D 학습 데이터가 없는 상황에서 단일 이미지로부터 3D 사람 자세를 추정하는 딥러닝 기법을 제안한다. 이를 위하여 사전 훈련된 다중 시점 학습모델을 사용하여 2D 자세 데이터로부터 가상의 다중 시점 데이터를 생성하여 훈련하는 연역적 학습 기반 교사-학생 모델을 구성하였다. 또한, 키포인트 깊이 정보 대신 2D 이미지로부터 레이블링 된 순서 깊이 정보에 기반한 손실함수를 적용하였다. 제안된 모델이 동물데이터에서 적용 가능한지 평가하기 위해 실험은 사람 데이터를 사용하여 이루어졌다. 실험 결과는 제안된 방법이 기존 단안 이미지 기반 모델보다 3D 자세 추정의 성능을 개선함을 보여준다.

Implications for the Direction of Christian Education in the Age of Artificial Intelligence (인공지능 시대의 기독교교육 방향성에 대한 고찰)

  • Sunwoo Nam
    • Journal of Christian Education in Korea
    • /
    • v.74
    • /
    • pp.107-134
    • /
    • 2023
  • The purpose of this study is to provide a foundation for establishing the correct direction of education that utilizes artificial intelligence, a key technology of the Fourth Industrial Revolution, in the context of Christian education. To achieve this, theoretical and literature research was conducted. First, the research analyzed the historical development of artificial intelligence to understand its characteristics. Second, the research analyzed the use of artificial intelligence in convergence education from an educational perspective and examined the current policy direction in South Korea. Through this analysis, the research examined the direction of Christian education in the era of artificial intelligence. In particular, the research critically examined the perspectives of continuity and change in the context of Christian education in the era of artificial intelligence. The research reflected upon the fundamental educational purposes of Christian education that should remain unchanged despite the changing times. Furthermore, the research deliberated on the educational curriculum and teaching methods that should adapt to the changing dynamics of the era. In conclusion, this research emphasizes that even in the era of artificial intelligence, the fundamental objectives of Christian education should not be compromised. The utilization of artificial intelligence in education should serve as a tool that fulfills the mission permitted by God. Therefore, Christian education should remain centered around God, rooted in the principles of the Bible. Moreover, Christian education should aim to foster creative and convergent Christian nurturing. To achieve this, it is crucial to provide learners with an educational environment that actively utilizes AI-based hybrid learning environments and metaverse educational platforms, combining online and offline learning spaces. Moreover, to enhance learners' engagement and effectiveness in education, it is essential to actively utilize AI-based edutech that reflects the aforementioned educational environments. Lastly, in order to cultivate Christian learners with dynamic knowledge, it is crucial to employ a variety of teaching and learning methods grounded in constructivist theories, which emphasize active learner participation, collaboration, inquiry, and reflection. These approaches seek to align knowledge with life experiences, promoting a holistic convergence of faith and learning.

An Introduction for Development of Cloud-based Intelligent Video Security Incubating Platform (클라우드 기반 지능형 영상보안 인큐베이팅 플랫폼 기술 개발 소개)

  • Lim, Kyung-Soo;Kim, Geon-Woo
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.330-331
    • /
    • 2017
  • 최근 클라우드 및 신경망 기반의 지능형 CCTV기술이 사회 안전 분야의 핵심 기술로 부상하면서 신학계에 관심이 커지고 있다. 이러한 동향을 반영하여 공공/사회 안전을 위한 실 환경 기반 지능형 영상 인식 기술의 지속적인 성능 업데이트 및 관리를 위한 온라인 학습 기반 인식 기술이 필요하다. 본 논문에서는 클라우드 기반 지능형 영상보안 온라인 인큐베이팅 플랫폼 기술 과제를 소개한다. 온라인 인식신경망 인큐베이팅이란, 원격 클라우드 환경을 이용하여 사용 중인 영상인식 신경망을 온라인 학습으로 실시간 업데이트하여 딥러닝 성능을 지속적으로 강화하는 기술이다. 본 논문에서는 클라우드 기반 지능형 영상보안 인큐베이팅 플랫폼 기술 과제를 소개한다.

Design and Implementation of Mobile phone Li-ion charger using artificial intelligence algorithm (인공지능 알고리즘을 이용한 Mobile phone Li-ion charger의 설계 및 구현)

  • 이창규;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.410-413
    • /
    • 2002
  • 일반적으로 휴대폰에는 리튬이온(Ll-lon) 전지(battery)를 많이 사용하고 있으며 그 전지(battery)를 충전시키기 위해 Microcontroller를 사용해서 과충전과 방전, 그리고 전지(battery) 보호와 충전에 대한 일정한 전류를 제어한다. 여기에서 충전 동작 시 필요한 일반직인 충전 전류 제어를 PWM의 방식에 의존하지 않고 인공지능 기법을 이용해 소프트웨어적으로 처리가 필요한 파라메터 값을 추정해 적용시키고자 한다. 따라서 개발한 충전시스템에 일반적인 충전 파라메터를 전압과 전류 그리고 시간으로 분류하여 Microcontroller에 그 파라메터를 적용시켜 PWM 방식으로 제어한 후에 실험에 의한 결과값을 얻는다. 그리고 이것들을 비교하여 보다 나은 충전시스템을 구현하기 위해 인공지능 기법 중에 하나인 신경망을 이용하여 전압과 전류 그리고 시간에 대한 파라메터를 처리하였다. 본 논문에서 신경망에 대한 파라메터의 학습을 일반 FC에서 구현하고 여기에서 추출된 학습 값을 Microcontroller에 적용시켜 입력값에 따라 다양한 PWM 신호를 발생시키도록 구현했다. 이후 실제적인 실험에 의한 결과값을 본 논문에서 서술하였다.

실증 기반 딥러닝 영상분석 기술 제공을 위한 클라우드 기반 지능형 영상보안 플랫폼

  • Lim, Kyung-Soo;Kim, Geon-Woo
    • Review of KIISC
    • /
    • v.29 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • 딥러닝을 비롯한 인공기능과 영상처리 분야의 접목은 기존 물리보안의 기술적 한계를 뛰어넘어 새로운 기회의 장을 마련하고 있다. 하지만 딥러닝 기반 영상분석 기술도 지능형 영상감시가 필요한 실제 현장에서는 다양한 환경의 제약사항으로 인해 성능이 저하될 가능성이 높다. 본 논문에서는 실제 CCTV 환경의 영상 데이터를 확보하여 신경망을 이용한 지속적인 학습을 통해 영상분석의 성능을 개선하는 클라우드 기반 지능형 영상보안 플랫폼을 소개한다. 클라우드 기반 지능형 영상보안 플랫폼은 지자체 통합관제센터에서 수집한 CCTV 영상을 학습 데이터로 활용하여, 현장에서 신뢰받을 수 있는 사람 검출, 사람/차량 재식별, 열악 차량번호판 탐지 등의 지능형 영상분석 서비스를 제공할 수 있다.

KE-T5-Based Text Emotion Classification in Korean Conversations (KE-T5 기반 한국어 대화 문장 감정 분류)

  • Lim, Yeongbeom;Kim, San;Jang, Jin Yea;Shin, Saim;Jung, Minyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

A Research on Explainability of the Medical AI Model based on Attention and Attention Flow Graph (어텐션과 어텐션 흐름 그래프를 활용한 의료 인공지능 모델의 설명가능성 연구)

  • Lee, You-Jin;Chae, Dong-Kyu
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.520-522
    • /
    • 2022
  • 의료 인공지능은 특정 진단에서 높은 정확도를 보이지만 모델의 신뢰성 문제로 인해 활발하게 쓰이지 못하고 있다. 이에 따라 인공지능 모델의 진단에 대한 원인 설명의 필요성이 대두되었고 설명가능한 의료 인공지능에 관한 연구가 활발히 진행되고 있다. 하지만 MRI 등 의료 영상 인공지능 분야에서 주로 진행되고 있으며, 이미지 형태가 아닌 전자의무기록 데이터 (Electronic Health Record, EHR) 를 기반으로 한 모델의 설명가능성 연구는 EHR 데이터 자체의 복잡성 때문에 활발하게 진행 되지 않고 있다. 본 논문에서는 전자의무기록 데이터인 MIMIC-III (Medical Information Mart for Intensive Care) 를 전처리 및 그래프로 표현하고, GCT (Graph Convolutional Transformer) 모델을 학습시켰다. 학습 후, 어텐션 흐름 그래프를 시각화해서 모델의 예측에 대한 직관적인 설명을 제공한다.