Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.186-189
/
2005
본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.
프로그래밍 능력은 21세기 정보화 사회를 살아가는데 있어 인간이 컴퓨터를 활용하여 다양한 문제를 해결할 수 있도록 도움을 준다. 효과적인 프로그래밍 교육이 이루어지기 위해서는 학습자들에게 순차적 수행, 조건적 수행, 반복적 수행과 같은 기본적인 프로그래밍 개념을 습득하도록 할 필요가 있다. 따라서 본 연구는 스도쿠 인공지능 프로그래밍 교육에서 프로그래밍의 기본 개념을 바탕으로 알고리즘을 설계하는 방법을 학습시키는 방안을 모색하기 위한 목적이 있다. 연구의 목적을 달성하기 위해 중학생 10명을 대상으로 실험 연구를 진행하였다. 연구 결과, 학습자는 연구자가 제안한 활동지가 알고리즘 설계 학습에 도움이 된 것으로 인식한 것을 확인할 수 있었다. 본 연구는 프로그래밍 교육에서 초보 학습자가 이해하기 어려워하는 프로그래밍 개념을 학습하는데 도움이 되는 학습 방법을 제시하였다는데 의의가 있다.
Journal of The Korean Association For Science Education
/
v.21
no.1
/
pp.13-21
/
2001
This study examined the influences of project activities based on multiple intelligences to science achievement of elementary school children. The proportions of variance of science achievement explained by General Intelligence(GI) and Multiple Intelligences(MI) were analyzed, then the influences of project activities, which used various aspects of MI were investigated. Two classes of grade 5 at Pusan in Korea were selected for the study. On the basis of science achievement of prior term, the subjects were classified into upper-, average-, and lower-achievement groups. GI and MI were measured for each child, and the relationships of these measures with prior science achievement were analyzed using multiple regression analyses. In order to investigate the effects of the project activities on science achievement, the classes were divided into the control and experimental groups, which the former group learned science topics using the traditional teaching and learning method and the latter group performed the projects about the same topics using their own multiple intelligences. Then, their achievements were analyzed by ANOVA. Results showed that the proportion of variance explained by MI was higher about two times than that of explained by GI. Project activities contributed to the improvement of science achievement of average and upper achievers, however, in the case of under achievers, this effect was not statistically significant.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.4
/
pp.383-389
/
2004
This paper proposes a method to provide intelligence for characters in fighting action games by using a neural network. Each action takes several time units in general fighting action games. Thus the results of a character's action are not exposed immediately but some time units later. To design a suitable neural network for such characters, it is very important to decide when the neural network is taught and which values are used to teach the neural network. The fitness of a character's action is determined according to the scores. For learning, the decision causing the score is identified, and then the neural network is taught by using the score change, the previous input and output values which were applied when the decision was fixed. To evaluate the performance of the proposed algorithm, many experiments are executed on a simple action game (but very similar to the actual fighting action games) environment. The results show that the intelligent character trained by the proposed algorithm outperforms random characters by 3.6 times at most. Thus we can conclude that the intelligent character properly reacts against the action of the opponent. The proposed method can be applied to various games in which characters confront each other, e.g. massively multiple online games.
In this paper, we present an on-line quiz authoring software that helps teachers create an intelligent on-line quiz. It is designed to give each student appropriate diagnostic report using Bayesian inference networks that represent the relationships among knowledge-items. Once the authors design and edit quizzes in quiz authoring page, the authoring tool automatically produces a knowledge-model based on Bayesian inference network, on-line quizzes, and student report pages. It turns out that the on-line quizzes generated by this tool help students identify their weak parts of subject, make learning strategies for the next learning steps and carry out supplementary learning for their weak knowledge-items.
The Journal of Korean Institute of Information Technology
/
v.17
no.12
/
pp.125-134
/
2019
As the limitations of the passive recognition domain, which is not guaranteed transparency of the operation process, AI technology has a vulnerability that depends on the data. Human error is inherent because raw data for artificial intelligence learning must be processed and inspected manually to secure data quality for the advancement of AI learning. In this study, we examine the necessity of learning data management before machine learning by analyzing inaccurate cases of AI learning data and cyber security attack method through the approach from cyber security perspective. In order to verify the learning data integrity, this paper presents the direction of data-preserving artificial intelligence system, a blockchain-based learning data environment model. The proposed method is expected to prevent the threats such as cyber attack and data corruption in providing and using data in the open network for data processing and raw data collection.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.27-30
/
2000
본 논문에서는 선형 이진 신경회로망(Linear Binary Neural Network)을 이용하여 이진 영상으로부터 골격(skeleton)을 추출하는 병렬 구조를 제안하였다. 기존의 골격 추출 알고리즘으로부터 이진함수를 추출하고 이를 MSP Term Grouping Algorithm을 이용하여 학습시켰다. 결과에서는 기존의 역전파(Back-propagation) 학습알고리즘을 사용한 신경회로망보다 더 쉽게 하드웨어로 구현할 수 있음을 보여준다.
Artificial intelligence technology, which represents the era of the 4th Industrial Revolution, is now deeply involved in our lives, and future education places great emphasis on building students' capabilities for the principles and uses of artificial intelligence. Therefore, the purpose of this study is to develop the contents of AI related education in mathematics, which the relationship is closely connected to each other. To this end, I propose establishing two novel AI-related contents in mathematics education. One subject is related to learning the principle of machine learning based on mathematics foundation. In addition, I draw the core math contents dealt in following subject called 'Basic Mathematics for AI and Data Science.'
최근의 인공지능과 기계학습 기술이 과학기술 전반에 걸쳐서 적용되고 있다. 정보보안 분야에서도 인공지능 기술이 다양하게 적용되어 여러 가지 우수한 성능의 제품과 기술들이 나오고 있다. 이러한 시점에 인공지능과 기계학습의 원천 이론 중 하나인 베이지안 추론 (Bayesian Inference)기술에 대한 소개를 하고자 한다. 특히, 정보보호를 연구하는 연구자들에게 베이지안 기술의 기초부터 활용에 이르는 영역을 선보이며 악성코드 분석과 함께 카드사기탐지 기술과 관련하여 베이지안 추론 기술의 적용가능성을 소개한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.275-279
/
1997
최근 인공지능연구에서는 기호즈의와 커넥션니즘이 독립적으로 연구되어 왔으나 차츰 융합의 필요성이 절실히 요구되고 있다. 본 연구에서는 먼저 기호주의의 일부분인 고전논리를 확장한 다치논리와 커넥션니즘의 기본부분인 신경회로망을 융합한 다치신경망을 구성하고, BP에 기반을 둔 학습 MVL 네트워크를 이용하여 해석한다. 본 논문에서는 이러한 구성 및 해석방법을 확장하여 비고전적인 다치신경회로망을 구성하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.