• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.036 seconds

Class Classification and Type of Learning Data by Object for Smart Autonomous Delivery (스마트 자율배송을 위한 클래스 분류와 객체별 학습데이터 유형)

  • Young-Jin Kang;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • Autonomous delivery operation data is the key to driving a paradigm shift for last-mile delivery in the Corona era. To bridge the technological gap between domestic autonomous delivery robots and overseas technology-leading countries, large-scale data collection and verification that can be used for artificial intelligence training is required as the top priority. Therefore, overseas technology-leading countries are contributing to verification and technological development by opening AI training data in public data that anyone can use. In this paper, 326 objects were collected to trainn autonomous delivery robots, and artificial intelligence models such as Mask r-CNN and Yolo v3 were trained and verified. In addition, the two models were compared based on comparison and the elements required for future autonomous delivery robot research were considered.

The intelligent warning method for the water pollution accident (수질오염사고를 위한 지능형 경보 기법)

  • Yeon, In-Sung;Lee, Jae-Kyung;Lee, Jae-Kwan;Ahn, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1043-1047
    • /
    • 2007
  • 수질오염사고로 발생할 수 있는 시나리오를 통해서 스스로 수질오염사고를 판단할 수 있는 지능형 알고리즘들을 검토하였다. 지능형 알고리즘의 학습을 위해 개발된 기준축과 학습지표는 적절한 결과를 유도하는데 유용하였다. 다층신경망, 뉴로-퍼지 알고리즘은 TOC와 DO의 이상 수질에 대하여 안정, 주의, 경고 상태를 적합하게 구별하는 것으로 나타났으며, 다중퍼셉트론 알고리즘은 모호한 자료에 대해서는 판단능력이 부족한 것으로 나타났다. 구조가 단순하지만 양방향 연산을 수행하는 BAM(Bidirectional Associative Memory) 알고리즘은 다층신경망과 뉴로-퍼지 알고리즘과 비교할 때, 학습 및 구동시간이 짧을 뿐만아니라 결과 또한 안정적인 것으로 나타났다.

  • PDF

A Design of Intelligent Tutoring System for Piano Playing using MIDI Keyboard (미디키보드를 사용한 지능형 피아노 교습 시스템의 설계)

  • Kim, Hee-Sung;Choi, Chang-Min;Kim, Seong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.165-168
    • /
    • 2008
  • 이 논문에서는 멀티미디어 컴퓨터에 연결된 미디키보드를 사용하여 피아노 연주를 혼자서 배우고 연습할 수 있도록 하기 위한 지능형 교습 시스템을 개발하기 위하여, 시스템 구조 및 모듈별 기능과 기본적인 사용자 인터페이스를 설계하였다. 시스템의 구조는 미디 키보드의 실시간 연주 샘플링 모듈, 미디 데이타의 시퀀싱 모듈, 사운드 합성 모듈과 연결된 지능형 교습 시스템이 된다. 세분화된 모듈별 기능에서는 학습 콘텐츠, 학습자 모델, 진단 평가 모듈, 진도 관리 모듈, 등의 세부적인 기능 설계가 필요하다. 학습자 모델을 기반으로 진단 편가 및 진도 관리를 지능적으로 처리하기 위해서 CLIPS를 사용한 전문가시스템 접근을 사용한다. 컴퓨터 화면상의 악보 디스플레이, 실시간 연주 화면, 진단 평가 디스플레이를 위한 GUI 설계가 필요하다. 그리고, 향후 콘텐츠 구축 및 시스템 구현 시에 예상되는 문제점과 해결 방안을 논의한다.

  • PDF

A Method for Optimized Supervised Learning in Recyclable-PET Sorting based on Vision AI (비전 인공지능 기반의 Recyclable-PET 선별에서 최적의 감독학습 기법)

  • Kim, Ji Young;Ji, Min-Gu;Jung, Joong-Eun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.640-642
    • /
    • 2021
  • 비전 기반의 재활용-PET 선별공정에서, PET 외 물체와의 식별 성능은 물론 PET 용기 내 포함된 이물질 및 라벨, 뚜껑의 존재 여부, 색상에 대한 검출 성능은 재활용 소재 품질에 중요한 영향을 미친다. 본 연구에서는 비전 인공지능 기반의 재활용-PET 자동 선별 시스템을 제안하고, 인공지능 모델의 제작에서 감독학습의 학습 효과를 최적화하기 위한 데이터 레이블링 기법을 제안한다. 재활용대상 PET 와 이물질 파트가 포함된 용기의 컨베이어벨트 선별공정 혼입을 재현한 실험을 통해서, 재활용 소재화 물량과 순도를 최대화하기 위한 인공지능 모델 생성 방법에 대해 고찰한다.

Discharge prediction in a stream using ANN technique (인공신경망 기법을 이용한 하천에서 유량 예측)

  • Choi, Seongwook;Kang, Dongwon;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.116-116
    • /
    • 2022
  • 현재 인공지능은 공학적 문제 해결 외에도 다양한 분야에 적용되어 매우 친숙하게 활용되고 있다. 특히 하천 분야에서는 시설물 주위 국부세굴 또는 어류 서식처 분석과 같이 관련 변수들의 복잡성으로 적절한 결과를 쉽게 얻어내기 어려운 것들에 적용되고 있다. 그 외에도 인공지능 기법을 적용할 수 있는 분야로 하천에서의 수위를 이용하여 유량을 예측하는 것이 있다. 기존에는 수위-유량 관계 곡선을 만들어 수위를 이용하여 유량을 예측하였으나, 관계곡선 제작에 활용된 수위와 유량 범위에서 벗어나는 경우 과다한 유량으로 계산되는 경우가 있다. 본 연구에서는 인공지능 기법 중 하나인 인공신경망 기법을 사용하여 하천의 유량 예측을 수행하였다. 기존 국가수자원관리종합정보시스템에 기록된 자료를 활용하여 수위와 유량 자료를ANN에 학습시키고 학습에 활용하지 않은 시기의 자료를 이용하여 전반적인 유량 예측 성능과 루프형 수위-유량 관계 곡선을 생성할 수 있는지를 검토하였다. 또한 학습 범위를 벗어난 홍수량에 대한 측정 결과를 검토하고, 기존 수위-유량 관계곡선과 비교하여 그 성능을 검토하였다.

  • PDF

A Study on the Design of Home Network Controlling System using User Preference Information (사용자 선호정보를 활용한 홈 네트워크 제어 시스템 구축에 관한 연구)

  • Sung, Kyung-Sang;Lee, Jun-Ho;Oh, Hae-Seok
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.814-817
    • /
    • 2007
  • 사용자 행위 학습에 따른 지능적 자동 제어 시스템 구축에서 먼저 고려해야 할 사항은 사용자 행위학습에 따른 지능적 자동 제어에 대한 기준을 마련하는 것이다. 홈 네트워크 내의 정보가전기기들 환경에 대한 정보를 지속적으로 수집하고 학습 알고리즘을 통하여 분석하며, 분석되어진 정보를 바탕으로 사용자의 성향을 파악하여야 한다. 본 논문에서는 사용자 친화적 지능형 공간 제어 시스템을 제안하였다. 또한 사용자의 성향이 파악되면 지속적으로 홈 네트워크를 모니터링하여 사용자의 성향에 따라 항상 최적의 환경을 제공할 수 있도록 홈 네트워크 제어 시스템을 구축하였다. 사용자의 행동 패턴을 분석하고 이를 기반으로 지능적인 서비스를 제공함으로써 사용자 중심의 능동적 서비스 효과들을 얻을 수 있을 것으로 기대한다.

A Study on Automatic Classification of Record Text Using Machine Learning (기계학습을 이용한 기록 텍스트 자동분류 사례 연구)

  • Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.321-344
    • /
    • 2017
  • Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.

A Study on the Effectiveness of Algorithm Education Based on Problem-solving Learning (문제해결학습의 알고리즘 교육의 효과성 연구)

  • Lee, Youngseok
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2020
  • In the near future, as artificial intelligence and computing network technology develop, collaboration with artificial intelligence (AI) will become important. In an AI society, the ability to communicate and collaborate among people is an important element of talent. To do this, it is necessary to understand how artificial intelligence based on computer science works. An algorithmic education focused on problem solving and learning is efficient for computer science education. In this study, the results of an assessment of computational thinking at the beginning of the semester, a satisfaction survey at the end of the semester, and academic performance were compared and analyzed for 28 students who received algorithmic education focused on problem-solving learning. As a result of diagnosing students' computational thinking and problem-solving learning, teaching methods, lecture satisfaction, and other environmental factors, a correlation was found, and regression analysis confirmed that problem-solving learning had an effect on improving lecture satisfaction and computational thinking ability. For algorithmic education, if you pursue a problem-solving learning technique and a way to improve students' satisfaction, it will help students improve their problem-solving skills.

A Specification-Based Methodology for Data Collection in Artificial Intelligence System (명세 기반 인공지능 학습 데이터 수집 방법)

  • Kim, Donggi;Choi, Byunggi;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.479-488
    • /
    • 2022
  • In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.

A Study of Artificial Intelligence Learning Model to Support Military Decision Making: Focused on the Wargame Model (전술제대 결심수립 지원 인공지능 학습방법론 연구: 워게임 모델을 중심으로)

  • Kim, Jun-Sung;Kim, Young-Soo;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.