• Title/Summary/Keyword: 학습지능

Search Result 3,110, Processing Time 0.026 seconds

Improving learning outcome prediction method by applying Markov Chain (Markov Chain을 응용한 학습 성과 예측 방법 개선)

  • Chul-Hyun Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.595-600
    • /
    • 2024
  • As the use of artificial intelligence technologies such as machine learning increases in research fields that predict learning outcomes or optimize learning pathways, the use of artificial intelligence in education is gradually making progress. This research is gradually evolving into more advanced artificial intelligence methods such as deep learning and reinforcement learning. This study aims to improve the method of predicting future learning performance based on the learner's past learning performance-history data. Therefore, to improve prediction performance, we propose conditional probability applying the Markov Chain method. This method is used to improve the prediction performance of the classifier by allowing the learner to add learning history data to the classification prediction in addition to classification prediction by machine learning. In order to confirm the effectiveness of the proposed method, a total of more than 30 experiments were conducted per algorithm and indicator using empirical data, 'Teaching aid-based early childhood education learning performance data'. As a result of the experiment, higher performance indicators were confirmed in cases using the proposed method than in cases where only the classification algorithm was used in all cases.

Robot Locomotion via RLS-based Actor-Critic Learning (RLS 기반 Actor-Critic 학습을 이용한 로봇이동)

  • Kim, Jong-Ho;Kang, Dae-Sung;Park, Joo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.234-237
    • /
    • 2005
  • 강화학습을 위한 많은 방법 중 정책 반복을 이용한 actor-critic 학습 방법이 많은 적용 사례를 통해서 그 가능성을 인정받고 있다. Actor-critic 학습 방법은 제어입력 선택 전략을 위한 actor 학습과 가치 함수 근사를 위한 critic 학습이 필요하다. 본 논문은 critic의 학습을 위해 빠른 수렴성을 보장하는 RLS(recursive least square)를 사용하고, actor의 학습을 위해 정책의 기울기(policy gradient)를 이용하는 새로운 알고리즘을 제안하였다. 그리고 이를 실험적으로 확인하여 제안한 논문의 성능을 확인해 보았다.

  • PDF

A Study on Learning to Creative Solve Problems using RDS (RDS를 이용한 창의적 문제해결 학습방법에 관한 연구)

  • Hong, Seong-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.154-155
    • /
    • 2010
  • 21세기 지식정보화 시대의 정보과학기술은 중요한 교육으로 발전하고 있으며, 최근 6T를 기반으로 융합 IT는 미래사회의 중요한 과학기술로 연구 발전 시켜나가고 있다. 최근 이러한 융합적 IT기술의 근원은 창의성 계발과 아이디어를 중요시하고 있으며, 창조적 인재육성을 지향하고 있다. 창조적 인재육성은 창의적 문제해결 학습에 의한 두뇌의 발달과 창의적 설계를 가능하게 하므로 새로운 학습방법 연구가 활발히 진행 되어야 할 필요가 있다. 본 논문에서는 RDS를 이용한 창의적 문제해결 학습방법에 대하여 설명하고, 융합 IT분야에서도 미래사회에 가장 많은 영향력을 가지고 있는 지능로봇 분야의 창의적 설계와 응용을 학습할 수 있는 방법에 대하여 소개한다. RDS는 지능로봇 시뮬레이션 프로그램을 서비스 컴포넌트 기반으로 창의적 설계에 대하여 3차원 가상공간에서 학습자가 직접 프로그램으로 제작 실험이 가능하도록 지원한다. 또한 수학적, 과학적 학습의 효과를 동시에 IT에 접목할 수 있는 종합교육학습 시스템으로 발전시켜 나갈 수 있다. 시각적 시뮬레이션 환경(VSE)은 학습자의 문제해결력을 위한 경험과 실험을 동시에 실시간 제공할 수 있는 것이 큰 장점이다.

  • PDF

Extended Q-Learning under Multiple Subtasks (복수의 부분작업을 처리할 수 있는 확정된 Q-Learning)

  • 오도훈;이현숙;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.25-34
    • /
    • 2001
  • 지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.

  • PDF

Topic directed Web Spidering using Reinforcement Learning (강화학습을 이용한 주제별 웹 탐색)

  • Lim, Soo-Yeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.395-399
    • /
    • 2005
  • In this paper, we presents HIGH-Q learning algorithm with reinforcement learning for more fast and exact topic-directed web spidering. The purpose of reinforcement learning is to maximize rewards from environment, an reinforcement learning agents learn by interacting with external environment through trial and error. We performed experiments that compared the proposed method using reinforcement learning with breath first search method for searching the web pages. In result, reinforcement learning method using future discounted rewards searched a small number of pages to find result pages.

Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating (귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우)

  • 이상호;지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

A study on the factors of elementary school teachers' intentions to use AI math learning system: Focusing on the case of TocToc-Math (초등교사들의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인 연구: <똑똑! 수학탐험대> 사례를 중심으로)

  • Kyeong-Hwa Lee;Sheunghyun Ye;Byungjoo Tak;Jong Hyeon Choi;Taekwon Son;Jihyun Ock
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.335-350
    • /
    • 2024
  • This study explored the factors that influence elementary school teachers' intention to use an artificial intelligence (AI) math learning system and analyzed the interactions and relationships among these factors. Based on the technology acceptance model, perceived usefulness for math learning, perceived ease of use of AI, and attitude toward using AI were analyzed as the main variables. Data collected from a survey of 215 elementary school teachers was used to analyze the relationships between the variables using structural equation modeling. The results of the study showed that perceived usefulness for math learning and perceived ease of use of AI significantly influenced teachers' positive attitudes toward AI math learning systems, and positive attitudes significantly influenced their intention to use AI. These results suggest that it is important to positively change teachers' perceptions of the effectiveness of using AI technology in mathematics instruction and their attitudes toward AI technology in order to effectively adopt and utilize AI-based mathematics education tools in the future.

Artificial Intelligence Game System "AlGGAGO" (알까기 인공지능 시스템 "알까고")

  • Lee, Keon-Ho;Yoon, Won-Tak;Park, Jin-Soo;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.932-935
    • /
    • 2017
  • 최근 인공지능은 딥러닝, 기계학습 등 인공지능 기술이 발전되면서 기술 상용화가 가시화되고 있다. 이에 따라 인공지능분야는 다른 산업의 핵심 기술로 급부상과 함께 여러 글로벌 기업들이 적극적 투자를 실시하고 있는 추세이다. 이렇게 인공지능 기술이 발전하면서 인공지능 기반 기술 개발에서 타산업의 핵심기술로 프레임이 변화 되고 있으며 차세대 ICT 핵심 기술로 인식이 확산되고 있다. 따라서 본 논문에서는 이러한 인공지능 방법중 지도 학습의 의사 결정 트리 알고리즘을 사용하여 AWS(Amazone Web Service) EMR 서버에서 이를 알까기에 적용하여 알까고 게임 시스템을 구현하였다.

Development of a board game-based gamification learning model for training on the principles of artificial intelligence learning in elementary courses (초등과정 인공지능 학습원리 이해를 위한 보드게임 기반 게이미피케이션 교육 실증)

  • Kim, Jinsu;Park, Namje
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • By combining the elements of the game or game in education, it improves the interest of the students and improves academic achievement by creating an environment where they can participate directly. We propose a curriculum that can learn the core principles of the elementary curriculum through fusion. The proposed curriculum helps students to understand the principles of the elementary curriculum by learning the artificial intelligence method in board game form. Learning methods that incorporate such elements of the game will enable learners to learn the principles of IT so that they can develop their ability to understand objects from various perspectives and enhance their thinking skills. It is expected that the elementary artificial intelligence curriculum that incorporates the proposed gamification will contribute to the development of the information science curriculum, which has been highlighted recently from the 2015 curriculum.

A Study on the Production of 3D Datasets for Stone Pagodas by Period in Korea

  • Byong-Kwon Lee;Eun-Ji Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.105-111
    • /
    • 2023
  • Currently, most of content restoration using artificial intelligence learning is 2D learning. However, 3D form of artificial intelligence learning is in an incomplete state due to the disadvantage of requiring a lot of computation and learning speed from the existing 2 axes (X, Y) to 3 axes (X, Y, Z). The purpose of this paper is to secure a data-set for artificial intelligence learning by analyzing and 3D modeling the stone pagodas of ourinari by era based on the two-dimensional information (image) of cultural assets. In addition, we analyzed the differences and characteristics of towers in each era in Korea, and proposed a feature modeling method suitable for artificial intelligence learning. Restoration of cultural properties relies on a variety of materials, expert techniques and historical archives. By recording and managing the information necessary for the restoration of cultural properties through this study, it is expected that it will be used as an important documentary heritage for restoring and maintaining Korean traditional pagodas in the future.