• Title/Summary/Keyword: 학습자 말뭉치

Search Result 36, Processing Time 0.026 seconds

Semi-automatic Semantic Role Labelling Tool based on Korean Case Frame (한국어 격틀사전 기반 의미역 반자동 부착 도구)

  • Kim, Wansu;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.251-254
    • /
    • 2014
  • 의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제로, 기계학습에 의한 의미역을 부착하기 위해서는 의미역 부착 말뭉치를 필요로 한다. 본 논문에서 격틀 사전을 사용하여 각 서술어의 논항의 의미역을 제한하여 작업자가 빠르게 의미역 말뭉치를 구축할 수 있도록 하는 의미역 반자동 부착 도구(UTagger-SR)를 개발하였다.

  • PDF

Analysis of Phonemic Errors of Korean Learners According to Language and Proficiency (언어권과 숙달도에 따른 한국어 학습자의 발음 오류 분석 - 음소 오류를 중심으로 -)

  • 유소영;강현화
    • Language Facts and Perspectives
    • /
    • v.44
    • /
    • pp.357-397
    • /
    • 2018
  • The purpose of this paper is to investigate the phonemic errors in Korean learner's spoken corpus. Through this, we tried to investigate the common errors and the errors in certain languages. The results of the analysis were as follows. First, Errors that distinguish three phonemes(plain sound, tense sound, aspiration sound) were high in all languages. In the middle phonemes, the most common errors in pronouncing 'ㅓ' in all languages. Second, the errors of each language are different. Comparing the ratios by position, Chinese characters had the most common errors with 50% in final phoneme, and the Japanese language showed equal errors in initial, middle, and end. In English, initial phoneme errors accounted for 58%. Vietnamese Learners showed intensive errors in the initial and final phoneme. Third, in addition to the phoneme errors, we also examined the allophone errors and foreign language pronunciation errors. The allophone errors are mainly concentrated in 'ㄹ', ​​and the pronunciation of the foreign language is mainly used in the source language or the native language of the learners. This paper analyzes the phoneme errors in the Learner's spoken language through the spoken corpus data with representative and annotation consistency. Through this study, we could compare the difference of phoneme errors of Main Korean learners.

Korean Automated Scoring System for Supply-Type Items using Semi-Supervised Learning (준지도학습 방법을 이용한 한국어 서답형 문항 자동채점 시스템)

  • Cheon, Min-Ah;Seo, Hyeong-Won;Kim, Jae-Hoon;Noh, Eun-Hee;Sung, Kyung-Hee;Lim, EunYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.112-116
    • /
    • 2014
  • 서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.

  • PDF

Grammar Error Detection System for Learners of Spoken and Written English (영어 말하기, 쓰기 학습자를 위한 문법 오류 검출 시스템)

  • Seo, Hongsuck;Lee, Sungjin;Lee, Jinsik;Lee, Jonghoon;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.136-139
    • /
    • 2011
  • 외국어 교육의 필요성이 강조되고 그에 대한 요구가 늘어남에 따라 언어 교육의 기회를 늘리고 비용을 줄이기 위해 컴퓨터 기반의 다양한 기술들의 요구 역시 증가하고 개발되고 있다. 언어 능력 개발의 중요한 요소로서 문법 교육에 대한 컴퓨터 지원 기술 연구가 활발히 진행되고 있다. 본 연구에서는 문법 오류 시뮬레이션을 통해 문법 오류 패턴 데이터베이스를 구축하고 이들 패턴과 사용자 입력의 패턴 매칭으로 생성된 자질 벡터로 기계 학습을 하여 문법성 확인을 했다. 문법성 확인 결과에 따라 오류 종류에 따른 상대 빈도를 고려하여 오류 종류를 분류했다. 또 말하기와 쓰기 작업의 서로 다른 특성을 반영하기 위해 말하기 작업과 쓰기 작업에 대한 두 개의 다른 말뭉치가 학습에 이용 되었다.

  • PDF

An Automatic Classification of Korean Documents Using Weight for Keywords of Document and Corpus : Bayesian classifier (문서의 주제어별 가중치와 말뭉치를 이용한 한국어 문서의 자동분류 : 베이지안 분류자)

  • 허준희;고수정;김태용;최준혁;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.154-156
    • /
    • 1999
  • 문서 분류는 미리 정의된 두 개 또는 그 이상의 클래스에 새로 생성되는 객체들을 할당하는 방법이다. 문서의 자동 분류에 대한 연구는 오래 전부터 연구되어 왔지만 한국어에 대한 적용 및 연구는 다른 분야에 비해 아직까지 활발히 이루어지지 않고 있다. 본 논문에서는 문서를 자동으로 분류하기 위해 문서의 주제어에 가중치를 부여하고, 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 주제어들과의 상호정보에 의해 추출된 단어를 사용하여 문서를 표현한 후, 가중치를 부여한 문서의 주제어에 베이지안 분류자를 사용하여 문서분류를 수행한다. 실험은 한국어 정보검색 실험용 데이터 집합인 KTset95 문서 4,414개 중 1,300개의 문서를 학습 집합으로, 1,000개의 문서를 분류에 대한 검증 집합으로 사용하였다. 실험 결과, 순수 베이지안 확률을 사용한 기존의 방법보다 실험 집합과 검증 집합에서 각각 1.92%, 4.3% 향상된 분류 정확도를 얻었다.

  • PDF

Context Based Real-time Korean Writing Correction for Foreigners (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun Ah
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1087-1093
    • /
    • 2017
  • Educating foreigners in Korean language is attracting increasing attention with the growing number of foreigners who want to learn Korean or want to reside in Korea. Existing spell checkers mostly focus on native Korean speakers, so they are inappropriate for foreigners. In this paper, we propose a correction method for the Korean language that reflects the contextual characteristics of Korean and writing characteristics of foreigners. Our method can extract frequently used expressions by Koreans by constructing syllable reverse-index for eojeol bi-gram extracted from corpus as correction candidates, and generate ranked Korean corrections for foreigners with upgraded edit distance calculation. Our system provides a user interface based on keyboard hooking, so a user can easily use the correction system along with other applications. Our system improves the detection rate for foreign language users by about 45% compared to other systems in foreign language writing environments. This will help foreign users to judge and correct their own writing errors.

A Study on the Use of Genitive Particle '의': Focusing on the analysis of Korean Learners Corpus (한국어 학습자의 관형격 조사 '의' 사용 양상 연구: 학습자 말뭉치 분석을 중심으로)

  • Ji-Young Sim;Soo-Hyun Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.433-442
    • /
    • 2023
  • The purpose of this study is to reveal the Korean learners' usage pattern of '의', the genitive particle, according to semantic classification, so that it can be referred to in determining the contents and methods of related education. The method of this study adopts a quantitative analysis using learners corpus established by National Institute of Korean Language. As a result of the analysis, as proficiency increases, the overall frequency of '의' increases and the number of meaning senses used increases. However, the frequency of errors also increases with it. As for the usage pattern of each sense, the meaning of 'ownership, belonging' is the most frequent, and followed by 'acting entity', 'kinship, social relations', and 'relationship(area)'. In conclusion, the meanings of 'acting subjects' and 'relationships(area) need to be supplemented with explicit education. Other meanings need to be discussed, and decisions should be made in consideration of learning purpose and proficiency.

Context Based Real-time Korean Writing Correcting for Foriengers (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.273-275
    • /
    • 2016
  • 외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.

  • PDF

Subjective Tests Sub-System Applied with Generalized Vector Space Model (일반화된 벡터 공간 모델을 적용한 주관식 문제 채점 보조 시스템)

  • Oh, Jung-Seok;Chu, Seung-Woo;Kim, Yu-Seop;Lee, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.965-968
    • /
    • 2004
  • 기존의 주관식 문제 채점 보조 시스템은 자연어 처리의 어려움으로 인해 채점의 자동화가 어려워 전자우편 등을 통하여 채점자에게 채점 의뢰를 하는 수준이었다. 본 논문에서는 이러한 문제점을 해결하기 위하여 문제 공간을 벡터 공간으로 정의하고 벡터를 구성하는 각 자질간의 상관관계를 고려한 방법을 적용하였다. 먼저 학습자가 답안을 작성할 때 동의어 사용을 한다는 가정하에 출제자가 여러 개의 모범 답안을 작성하고 이들 답안을 말뭉치에 첨가하여 구성한 다음 형태소 분석기를 통하여 색인을 추출한다. 그리고 학습자가 작성한 답안 역시 색인을 추출한 다음, 이들 색인들을 각 자질로 정의한 벡터를 구성한다. 이렇게 구성된 벡터들을 이용하여 답안들간 유사도 측정을 하고, 유사도 범위에 따라 답안을 자동으로 정답과 오답으로 분류하려는 시스템을 제안한다. 170 문항의 주관식 문제을 제안된 방법으로 실험하여, 기존 모델에 비해 성능과 신뢰성 향상을 이룰 수 있었다.

  • PDF

CEFR-based Sentence Writing Assessment using Bilingual Corpus (병렬 말뭉치를 이용한 CEFR 기반 문장 작문 평가)

  • Sung-Kwon Choi;Oh-Woog Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.54-57
    • /
    • 2023
  • CEFR(Common European Framework of Reference for Language)는 유럽 전역의 교육기관에서 언어구사 능력을 평가하는 평가 기준이다. 본 논문은 학습자가 문장 작문한 것을 CEFR 에 기반하여 평가하는 모델을 기술하는 것을 목표로 한다. CEFR 기반 문장 작문 평가는 크게 전처리 단계, 작문 단계, 평가 단계로 구성된다. CEFR 기반 문장 작문 평가 모델의 평가는 CEFR 수준별로 분류한 문장들이 전문가의 수동 분류와 일치하는 지의 정확도와 학습자가 작문한 결과의 자동 평가로 측정되었다. 실험은 독일어를 대상으로 하였으며 독일어 전공 41 명의 대학생에게 CEFR 6 등급별로 5 문장씩 총 30 문장의 2 세트를 만들어 실험을 실시하였다. 그 결과 CEFR 등급별 자동 분류는 전문가의 수동 분류와 61.67%로 일치하는 정확도를 보였다.