• 제목/요약/키워드: 학습자 말뭉치

검색결과 36건 처리시간 0.019초

한국어 튜터링 챗봇을 위한 말뭉치 구축 (Building a Corpus for Korean Tutoring Chatbot)

  • 김한샘;최경호;한지윤;정해영;곽용진
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.288-293
    • /
    • 2017
  • 교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는 데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.

  • PDF

신경망을 이용한 반자동 구문분석 말뭉치 구축도구 (Semi-Automatic Tree Annotating Workbench Using Neural-Networks)

  • 임준호;곽용재;박소영;임해창
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.483-485
    • /
    • 2003
  • 구문분석 말뭉치는 통계적 구문분석 분야의 필수적인 항목으로 많은 유용성을 가지지만, 말뭉치를 구축할 때 막대한 시간과 비용이 요구되기 때문에 구축자의 수작업을 감소시키는 방법에 대한 연구가 필요하다. 본 논문에서는 대량의 신뢰도 있는 구문분석 말뭉치를 구축하기 위해 신경망을 사용하는 반자동 구문 분석 말뭉치 구축도구에 대해서 설명한다. 개발된 도구는 구문패턴 추골, 신경망 학습, 반자동 구축의 세 단계로 구성된다. 구문패턴 추출 단계에서는 사용자가 정의한 자질집합을 사용하여 기존에 구축된 말뭉치에서 구문패턴들을 추출하고, 신경망 학습의 단계에서는 추출된 구문패턴들을 사용하여 신경망을 학습한다. 그리고, 반자동 구축 단계에서는 학습된 신경망을 사용하여 반자동으로 구문분석 말뭉치를 구축한다. 본 논문에서 제안하는 방법은 다양한 자질집합을 조합하여 사용할 수 있고, 학습을 사용하기 때문에 학습 집합에 나타나지 않은 경우에 대해서도 합리적인 결정을 내릴 수 있다. 소량의 구문분석 말뭉치를 대상으로 실험한 결과, 본 논문에서 제안하는 방법이 약 42.5%의 수작업 횟수 감소율을 보였음을 알 수 있었다.

  • PDF

한국어 튜터링 챗봇을 위한 말뭉치 구축 (Building a Corpus for Korean Tutoring Chatbot)

  • 김한샘;최경호;한지윤;정해영;곽용진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.288-293
    • /
    • 2017
  • 교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.

  • PDF

문화유산정보 말뭉치 구축을 위한 개체명 및 이벤트 부착 도구 (Named Entity and Event Annotation Tool for Cultural Heritage Information Corpus Construction)

  • 최지예;김명근;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.29-38
    • /
    • 2012
  • 본 논문에서는 문화유산정보 말뭉치 구축을 위한 개체명 및 이벤트 부착 도구를 제안한다. 제안하는 도구를 이용하여 말뭉치 구축자는 문화유산정보 관리에 유용한 시간, 장소, 인물, 사건을 중심으로 개체명과 이벤트를 부착할 수 있다. 이 때, 개체명과 이벤트 부착이 용이하도록, 제안하는 도구에서 줄번호나 어절번호와 같은 개체명이나 이벤트의 위치정보를 자동으로 부착하며, 구축된 개체명이나 이벤트 중에서 하나를 선택하면 해당 문자열을 원문에서 진한 이탤릭체로 표시하여 올바르게 부착되었는지 쉽게 확인할 수 있다. 그리고, 제안하는 도구는 말뭉치 구축자의 수작업을 줄이기 위해서 개체명 자동인식 패턴을 활용한다. 학습말뭉치가 거의 없다는 점을 고려하여 단순한 규칙 패턴을 학습한다. 또한, 오류 전파를 차단하기 위해서, 제안하는 개체명 자동인식 패턴은 개체명 부착 말뭉치에서 추가적인 분석처리 없이 바로 추출한다. 실험결과 제안하는 개체명 및 이벤트 부착 도구는 말뭉치 구축자의 수작업량을 절반이상 줄여주었다.

GMM을 이용한 품사 부착 말뭉치의 오류 탐지 (Detecting errors on Korean POS tagged corpus using GMM)

  • 최민석;김창현;천민아;박호민;윤호;남궁영;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.246-251
    • /
    • 2019
  • 품사 부착 말뭉치란 문장에 포함된 각 단어에 품사 표지를 부착한 말뭉치를 말한다. 이런 말뭉치에는 다양한 형태의 오류들이 포함되어 있으며, 오류가 포함된 말뭉치를 학습 자료로 사용하는 자연언어처리 시스템의 좋은 성능을 기대할 수 없다. 따라서 말뭉치의 일관성이나 정확도는 자연언어처리 시스템의 성능에 많은 영향을 준다. 하지만 말뭉치 구축 과정에서 작업자의 실수가 발생하고 여러 작업자가 작업을 수행하다 보니 일관성을 유지하기가 쉽지 않다. 본 논문에서는 이러한 문제를 해결하기 위해서 GMM을 이용한 군집화를 수행하여 오류 후보를 추출한다. 이를 통해서 말뭉치 구축 과정에서 작업자의 실수를 방지하고 일관성을 유지하고자 한다. 세종품사부착 말뭉치를 대상으로 임의로 오류를 유발시켜 실험한 결과, 재현율 84.74%의 성능으로 오류를 탐지하였다. 향후에 좀 더 높은 재현율을 위해서 자질 확장이나 회귀 분석 방법 등을 추진할 계획이다.

  • PDF

학술적 글쓰기에서의 객관화 전략 사용 양상 연구 - 한국어 학습자와 한국어 모어 화자 간의 비교를 중심으로 - (Study on the Use of Objectification Strategy in Academic Writing)

  • 김한샘;배미연
    • 비교문화연구
    • /
    • 제49권
    • /
    • pp.95-126
    • /
    • 2017
  • 이 논문은 학습자의 학술적 텍스트와 모어 화자의 학술 텍스트를 비교해 구체적으로 학습자들의 객관화 전략의 사용 양상을 살펴보는 것을 목적으로 한다. 객관화 전략은 학문적 탐구의 결과를 보편성과 타당성을 갖추어 과학적으로 기술하기 위해 적용하는 담화 기제로서의 객관성을 갖추기 위해 필자가 사용하는 전략이다. 이 연구에서는 객관화 전략의 언어적 표지를 관련된 의도성, 정확성, 완화 등과 비교하여 분석하였다. 그 결과 객관화 표지가 관련 기제들을 나타내는 표지와 일부 겹치기는 하지만 개념은 변별될 수 있음을 알 수 있었다. 객관화 표지는 크게 연구 결과의 상태성을 강조하는 것과 연구 주체를 연구 결과와 분리하는 것, 연구 내용을 일반화하는 것으로 나누어 볼 수 있다. 지속 표현과 명사화 구문은 상태성을 강조하는 역할을 하고, 비인칭 표현, 피동 표현, 자기인용 등은 주장하는 바와 필자의 거리를 유지하게 하며, 1인칭 대명사와 접미사 등을 통한 복수화는 연구 내용을 일반화 하는 데에 기여한다. 모어 화자 말뭉치와 비교하여 학습자 말뭉치를 분석한 결과 연구 결과의 상태성을 강조하기 위해서 학습자들이 모어 화자에 비해 '-고 있다'는 더 많이 사용하는 반면, '-(으) ㄴ/는 것이다' 등의 문법적 연어는 적게 사용하는 것으로 나타났다. 연구 주체의 분리를 위한 비인칭 표현의 사용이 학습자 말뭉치에서는 '본 연구'와 '본고'에만 집중된 반면 모어 화자는 '본고, 본 연구, 본 논문, 본장 등'과 '이 연구, 이 논문, 이 장 등'이 고른 분포로 나타났다. 복수화를 통한 연구 내용의 일반화는 모어 화자 말뭉치에서 활발하게 구현되었다. 이 연구는 객관성 구현의 관점에서 한국어 학술 텍스트의 특성을 파악하고 학문 목적 학습자의 담화 표현 교육을 위한 기초 자료를 마련하였다는 데에 의의가 있다.

중국어권 한국어 학습자의 부사 사용에 대한 연구 (A Study on the Use of adverbs by Chinese Korean learners)

  • 한송화
    • 언어사실과 관점
    • /
    • 제48권
    • /
    • pp.33-59
    • /
    • 2019
  • In this paper, I analyzed the usage patterns of Chinese Korean learners in the Korean learners' corpus. To this purpose, I compared NIKL learners' corpus 674,553 words with the native speakers' corpus 1,055,790 words. According to the analysis, Chinese Korean learners used about 28 more adverbs per 1,000 words than native Korean in their writing. And Chinese Korean learners have either overused or underused the high frequency adverbs, the degree of overuse was stronger than underuse. And compared to native speakers, they lacked the diversity of the use of adverbs. From this corpus analysis, we were able to identify the characteristics of Chinese Korean learners' use of adverbs. Korean learners overused adverbs such as '너무, 아주'and modal adverbs '정말, 진짜'to reinforce their own discourse, and they also used a lot of mimetic adverbs due to the influence of teaching. In addition, through the analysis of the learners' corpus, we were able to identify problems with the use of adverbs by Chinese Korean learners. Chinese Korean learners should try to expand available adverbs and diversify their choice of adverbs in their composition. And they should also develop the recognition of written and spoken registers when selecting adverbs.

국소 문맥을 이용한 형태적 중의성 해소 (Morphological disambiguation using Local Context)

  • 이충희;윤준태;송만석
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.48-55
    • /
    • 2000
  • 본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과(94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.

  • PDF

국소 문맥을 이용한 형태적 중의성 해소 (Morphological disambiguation using Local Context)

  • 이충희;윤준태;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.48-55
    • /
    • 2000
  • 본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.

  • PDF

한국어 학습자 말뭉치의 모어 판별 (Native Language Identification for Korean Learner Corpus)

  • 허희정;정승연;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.300-304
    • /
    • 2021
  • 모어 판별이란 제 2 언어를 습득하는 학습자들이 생산한 목표 언어에 기반하여 학습자들의 제 1 언어를 자동적으로 확인하는 작업을 말한다. 모여 판별 과제를 성공적으로 수행하기 위한 방법을 다룬 다양한 연구들이 진행되어 왔으나, 한국어를 대상으로 진행된 모어 판별 연구는 그 수가 극히 적다. 본 연구에서는 한국어 학습자 텍스트를 대상으로 머신 러닝, 딥 러닝의 다양한 문서 분류 모델을 실험하고, 이를 통해 한국어 학습자 텍스트 모어 판별을 위해 적합한 모델을 구축하기 위해 필요한 조건을 찾아보고자 하였다.

  • PDF