• 제목/요약/키워드: 학습용 데이터

검색결과 482건 처리시간 0.03초

다양한 아미노산 속성을 이용한 단백질 상호작용 예측 (Predicting Protein-Protein Interactions Using Various Amino Acid Properties)

  • 최일영;정유진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.310-312
    • /
    • 2004
  • 이 논문에서는, 단백질의 상호작용을 다양한 아미노산의 속성과 Support Vector Machine(SVM)을 사용하여 예측하였다. SVM을 사용한 단백질 상호작용의 예측 시스템에 단백질 상호작용에 중요한 작용을 하는 아미노산의 속성을 사용하고 있다. 이번 실험은 9가지의 아미노산의 속성의 조합 즉, 511(2$^{9}$ -1)가지의 아미노산 속성을 SVM 학습데이터로 사용하여 예측시스템의 결과를 비교한다. 실험에는 Database of Interacting Proteins(DIP)를 사용하였다. 실험을 위하여 DIP의 H.pylori를 학습용데이터로 사용하고, E.coli를 예측데이터(검증데이터)로 사용하였다. 실험에 따르면 H.pylori의 학습데이터와 E.coli를 예측데이터의 가공에 '소수성'을 사용한 방법보다 '방향성'을 사용한 방법이 더 높은 수치를 나타냈다.

  • PDF

2D-CNN 모델을 이용한 메타-전이학습 기반 부정맥 분류 (Arrhythmia classification based on meta-transfer learning using 2D-CNN model)

  • 김아현;염성웅;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.550-552
    • /
    • 2022
  • 최근 사물인터넷(IoT) 기기가 활성화됨에 따라 웨어러블 장치 환경에서 장기간 모니터링 및 수집이 가능해짐에 따라 생체 신호 처리 및 ECG 분석 연구가 활성화되고 있다. 그러나, ECG 데이터는 부정맥 비트의 불규칙적인 발생으로 인한 클래스 불균형 문제와 근육의 떨림 및 신호의 미약등과 같은 잡음으로 인해 낮은 신호 품질이 발생할 수 있으며 훈련용 공개데이터 세트가 작다는 특징을 갖는다. 이 논문에서는 ECG 1D 신호를 2D 스펙트로그램 이미지로 변환하여 잡음의 영향을 최소화하고 전이학습과 메타학습의 장점을 결합하여 클래스 불균형 문제와 소수의 데이터에서도 빠른 학습이 가능하다는 특징을 갖는다. 따라서, 이 논문에서는 ECG 스펙트럼 이미지를 사용하여 2D-CNN 메타-전이 학습 기반 부정맥 분류 기법을 제안한다.

생의학 분야 학술 논문에서의 개체명 인식 및 관계 추출을 위한 언어 자원 수집 및 통합적 구조화 방안 연구 (A Study on Collecting and Structuring Language Resource for Named Entity Recognition and Relation Extraction from Biomedical Abstracts)

  • 강슬기;최윤수;최성필
    • 한국문헌정보학회지
    • /
    • 제51권4호
    • /
    • pp.227-248
    • /
    • 2017
  • 본 논문에서는 급격히 증가하는 생의학 분야 비정형 텍스트에서 핵심적 내용을 추출할 수 있는 기계학습 기반 정보 추출시스템을 구축하기 위한 언어자원 수집 및 통합적 구조화 방안을 제안한다. 제안된 방법은 정보 추출 시스템을 크게 개체명 인식과 개체명 간 관계 추출 시스템으로 구분하고, 각각의 시스템에 적합한 학습데이터를 구성하기 위해 생의학 분야 개체명 사전과 학습 집합을 수집한다. 그리고 수집된 해당 자원들의 특성을 분석하여 개체 구별을 위해 필수적으로 포함시켜야 할 항목들을 도출하고 이를 통해 시스템 학습과정에서 사용될 학습 데이터를 구성하기 위한 항목을 선정한다. 이와 같이 선정된 학습데이터의 구성 내용에 따라 수집된 자원들을 가공하여 학습 데이터를 구축한다. 본 연구에서는 생의학 분야의 하위 분야인 유전자, 단백질, 질병, 약물 4개 분야에 대한 개체명 사전과 학습 집합을 수집하여 각각을 학습 데이터로 구축하였으며, 개체명 사전을 통해 구축된 개체명 인식용 학습 데이터를 대상으로 개체명 수용 범위를 측정하기 위한 검증 과정을 수행하였다.

데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현 (Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation)

  • 김치용;이현수;이광엽
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.468-474
    • /
    • 2022
  • 본 논문에서는 딥러닝을 이용하여 실시간 화재경보 시스템을 구현하는 방법을 제안한다. 화재경보를 위한 딥러닝 학습 이미지 데이터셋은 인터넷을 통하여 1500장을 취득하였다. 일상적인 환경에서 취득된 다양한 이미지를 그대로 학습하게 되면 학습 정확도가 높지 않은 단점이 있다. 본 논문에서는 학습 정확도 향상을 위해 화재 이미지 데이터 확장 방법을 제안한다. 데이터증강 방법은 밝기 조절, 블러링, 불꽃사진 합성을 이용해 학습 데이터 600장을 추가해 총 2100장을 학습했다. 불꽃 이미지 합성방법을 이용하여 확장된 데이터는 정확도 향상에 큰 영향을 주었다. 실시간 화재탐지 시스템은 영상 데이터에 딥러닝을 적용하여 화재를 탐지하고 사용자에게 알림을 전송하는 시스템이다. Edge AI시스템에 적합한 YOLO V4 TINY 모델을 custom 학습한 모델을 이용해 실시간으로 영상을 분석해 화재를 탐지하고 그 결과를 사용자에게 알리는 웹을 개발하였다. 제안한 데이터를 사용하였을 때 기존 방법에 비하여 약 10%의 정확도 향상을 얻을 수 있다.

연속 음성에서의 신경회로망을 이용한 화자 적응 (Speaker Adaptation Using Neural Network in Continuous Speech Recognition)

  • 김선일
    • 한국음향학회지
    • /
    • 제19권1호
    • /
    • pp.11-15
    • /
    • 2000
  • RM 음성 Corpus를 이용한 화자 적응 연속 음성 인식을 수행하였다. RM Corpus의 훈련용 데이터를 이용해서 기준화자에 대한 HMM 학습을 실시하고 평가용 데이터를 이용하여 화자 적응 인식에 대한 평가를 실시하였다. 화자 적응을 위해서는 훈련용 데이터의 일부가 사용되었다. DTW를 이용하여 인식 대상화자의 데이터를 기준화자의 데이터와 시간적으로 일치시키고 오차 역전파 신경회로망을 사용하여 인식 대상화자의 스펙트럼이 기준화자의 스펙트럼 특성을 지니도록 변환시켰다. 최적의 화자 적응이 이루어지도록 하기 위해 신경회로망의 여러 요소들을 변화시키면서 실험을 실시하고 그 결과를 제시하였다. 학습을 거쳐 적절한 가중치를 지닌 신경회로망을 이용하여 기준화자에 적응시킨 결과 단어 인식율이 최대 2.1배, 단어 정인식율이 최대 4.7배 증가하였다.

  • PDF

웹기반 의료영상 표준 데이터셋 변환 및 관리 시스템 구축 (Construction of Web-Based Medical Imgage Standard Dataset Conversion and Management System)

  • 김지언;임동욱;유영주;노시형;이충섭;김태훈;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.282-284
    • /
    • 2021
  • 최근 4차 산업혁명으로 의료빅데이터 기반으로 한 AI 기술이 급속도로 발전하고 있다. 특히, 의료영상을 기반으로 병변을 탐색, 분활 및 정량화 그리고 자동진단 및 예측 관련된 기술이 AI 제품으로 출시되고 있다. AI 기술개발은 많은 학습데이터가 요구되며, 임상검증에 단일기관에서 2개 이상 기관의 검증이 요구되고 있다. 그러나 아직까지도 단일기관에서 학습용 데이터와 테스트, 검증용 데이터를 달리하여 기술개발에 활용하고 있다. 본 논문은 AI 기술개발에 필요한 영상데이터에 대한 표준화된 데이터셋 변환 및 관리를 위한 시스템에 대해 기술한다. 다기관 데이터를 수집하기 위해서는 각 기관의 의료영상 데이터 수집 및 저장하는 기준이 명확하지 않아 표준화 작업이 필요하다. 제안한 시스템은 기관 또는 다기관 연구 그룹의 의료영상데이터를 표준화하여 저장할 수 있을 뿐만 아니라 의료영상 뷰어 및 의료영상 리스트를 통해 연구자가 원하는 의료영상 데이터 셋을 검색하여 다양한 데이터셋으로 제공할 수 있기 때문에 수집 및 변환 그리고 관리까지 지원할 수 있는 시스템으로 영상기반의 머신러닝 연구에 활력을 불어넣을 수 있을 것으로 기대하고 있다.

Modular Spiking Neural Networks 의 다중단계 학습알고리즘 (Multi-stage Learning for Modular Spiking Neural Networks)

  • 이경희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.347-350
    • /
    • 2021
  • 본 논문에서는 지도학습(Supervised Learning)알고리즘을 사용하는 모듈러 스파이킹 신경회로망(Modular Spiking Neural Networks)에서 학습의 진행 상황에 맞추어 학습용 데이터를 사용하는 다중 단계 학습알고리즘을 제안한다. 또한 컴퓨터 시뮬레이션에 의하여 항공영상 클러스터링 문제에 적용한 결과를 보임으로써 실제적인 문제에서의 적용 타당성과 가능성을 보인다.

스마트 자율배송을 위한 클래스 분류와 객체별 학습데이터 유형 (Class Classification and Type of Learning Data by Object for Smart Autonomous Delivery)

  • 강영진;김기환;정석찬
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.37-47
    • /
    • 2022
  • 자율배송 운행 데이터는 코로나 시대의 라스트마일 배송에 대한 패러다임 변화를 주도하는 핵심이다. 국내 자율배송로봇과 해외 기술선도국가 간의 기술격차 해소를 위해서는 인공지능 학습에 사용 가능한 대규모 데이터 수집과 검증이 최우선으로 요구된다. 따라서 해외 기술선도국가에서는 인공지능 학습데이터를 누구든 사용가능한 공공데이터 형태로 오픈하여 검증과 기술발전에 기여하고 있다. 본 논문은 자율배송로봇 학습을 목적으로 326개의 객체를 수집하고 Mask r-cnn, Yolo v3 등의 인공지능 모델을 학습하고 검증하였다. 추가적으로 두 모델을 기반으로 비교하고 향후 자율배송로봇 연구에 요구되는 요소를 고찰하였다.

합성곱 신경망을 활용한 군사용 CCTV 객체 인식 (Object Recognition Using Convolutional Neural Network in military CCTV)

  • 안진우;김도형;김재오
    • 한국시뮬레이션학회논문지
    • /
    • 제31권2호
    • /
    • pp.11-20
    • /
    • 2022
  • 병력감축 등 국방 및 안보환경의 변화에 따라 육군의 경계시스템에도 변화가 시급한 상황이다. 또한 경계작전의 특성상 인간의 실수가 번번이 발생하고 있으며 이러한 실수가 전체 경계작전의 실패로 귀결되는 상황은 경계시스템의 인공지능 도입이 필요한 것에 대한 중요한 이유이다. 본 연구의 목적은 합성곱 신경망 방법을 활용하여 군사용 CCTV에 적합한 인공지능 영상인식 시스템을 개발하는 것이다. 본 연구에서 개발한 시스템의 주요 특징은 먼저, 군사용 CCTV의 특징상 상대적으로 작은 객체를 인식해야하는 상황에 적합한 학습데이터를 활용한 것이다. 둘째, 학습용 데이터 셋에 대해 데이터 증강 알고리즘을 활용하여 군사용에 보다 적합하도록 유도한 것이다. 셋째, 군사용 영상의 위장, 악천후 등 상황을 고려하여 영상의 잡음을 개선하는 알고리즘을 적용하였다. 본 연구에서 제안하는 시스템의 성능 평가결과 객체의 인식능력이 기존 방법에 비해 우수함을 확인하였다.

자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제 (AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets)

  • 김가나;김학일
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.302-313
    • /
    • 2023
  • 본 연구는 과학기술정보통신부가 2017년부터 1조원 이상을 투자한 'AI Hub 댐' 사업에서 구축된 인공지능 모델 학습데이터의 품질관리를 자동화할 수 있는 프레임워크의 개발을 목표로 한다. 자율주행 개발에 사용되는 AI 모델 학습에는 다량의 고품질의 데이터가 필요하며, 가공된 데이터를 검수자가 데이터 자체의 이상을 검수하고 유효함을 증명하는 데는 여전히 어려움이 있으며 오류가 있는 데이터로 학습된 모델은 실제 상황에서 큰 문제를 야기할 수 있다. 본 논문에서는 이상 데이터를 제거하는 신뢰할 수 있는 데이터셋 정제 프레임워크를 통해 모델의 인식 성능을 향상시키는 전략을 소개한다. 제안하는 방법은 인공지능 학습용 데이터 품질관리 가이드라인의 지표를 기반으로 설계되었다. 한국정보화진흥원의 AI Hub을 통해 공개된 자율주행 데이터셋에 대한 실험을 통해 프레임워크의 유효성을 증명하였고, 이상 데이터가 제거된 신뢰할 수 있는 데이터셋으로 재구축될 수 있음을 확인하였다.