교육용 소프트웨어 산업이 급속히 발전하면서 온라인 게임을 플랫폼으로 하는 다양한 교육용 게임이 개발되고 있다. 현재 대부분 교육용 게임 시스템은 온라인 게임의 학습도구와 웹을 기반으로 하는 부가적 교육 학습도구로 이중화 되어 개발되고 있다. 하지만 온라인 게임의 학습 데이터 결과와 웹의 학습 데이터 결과가 일치화 되지 않아 학습자에게 올바른 학습 결과를 줄 수 없을 뿐만 아니라 게임 시스템의 학습과정에 따른 레벨 시스템을 적용하기가 어렵다. 본 논문에서는 이러한 비동기적 데이터 처리방식을 온라인 게임 시스템과 웹의 학습과정의 분기 조건에 필요한 학습결과 데이터만을 동기화 처리하는 학습 데이터 동기화 처리 방식을 구현하였다. 이러한 학습결과 데이터 동기화 처리는 위와 같은 문제점으로 다양한 학습 콘텐츠들이 온라인화 하지 못했던 문제점을 해결하고, 향후 통합 교육용 시스템과 다중 교육용 게임 시스템으로 개발 될 때 좀 더 효과적인 학습 시스템으로 개발될 수 있는 학습 데이터 처리 방식이 될 것이다.
기계학습의 정확도는 학습용 데이터의 양과 데이터의 품질에 많은 영향을 받는다. 기존의 웹을 기반으로 학습용 데이터를 수집하는 것은 실제 학습과 무관한 데이터가 수집 될 수 있는 위험성이 있으며 데이터의 투명성을 보장할 수가 없다. 본 논문에서는 블록체인구조에서 블록들이 직접 병렬적으로 데이터를 수집하게 하고 각 블록들이 수집한 데이터를 타 블록의 데이터와 비교하여 양질의 데이터만을 선별하는 방안을 제안한다. 제안하는 시스템은 각 블록들은 데이터를 서로 블록체인을 통해 공유하며 All-reduce 구조의 Parallel-SGD를 활용하여 다른 블록들의 데이터와 비교를 통해 양질의 데이터만을 선별하여 학습용 데이터셋을 구성할 수가 있다. 또한 본 논문에서는 제안한 구조의 성능을 확인하기 위해 실험을 통해 기존의 벤치마크용 데이터셋의 이미지를 활용하여 변조된 이미지 사이에서 원본 이미지만을 양질의 데이터로 판별함을 확인하였다.
본 연구의 목적은 랜드마크 이미지의 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안을 제시하기 위함이다. 이를 위해, 이미지 검색시스템의 종류와 각각의 색인 방식에 관한 최신 기술 현황을 포괄적으로 조사하여 분석하고, AI 머신러닝을 적용한 랜드마크 인식에 필수적인 학습용 공개 데이터셋과 이미지 객체 인식에 관한 기계학습 도구를 조사하였다. 이를 통해, 랜드마크 이미지 AI 학습용 데이터에 최적화된 메타데이터 요소를 선정하고 각각의 요소에 대한 입력 데이터를 정의하였다. 결론 및 제언에서는 랜드마크 인식을 활용한 추천시스템을 포함한 응용서비스 개발 방안을 논의하였다.
본 연구는 한국의 인공지능 학습용 데이터 구축 사업과 데이터의 공공 개방에 관한 정책 수행 기관, 데이터 구축 기업, 그리고 이를 활용하는 다양한 기관의 데이터 품질에 대해 이해를 제고하고, 신뢰할 수 있는 인공지능 알고리즘 개발에 있어 가장 중요한 학습용 데이터 품질에 대한 이론적 토대를 만들기 위한 실증적 연구이다. 이를 위해, 데이터의 속성 요인, 데이터 구축환경 요인, 데이터 타입 관련 요인 등 인공지능 학습용 데이터 품질과 관련된 중요 선행요인을 도입하여 이론적 모형을 제안한다. 본 연구는 393명의 인공지능 학습용 데이터 구축 기업과 인공지능 서비스 개발 기업의 실무 담당자를 대상으로 설문조사를 실시하여 데이터를 수집하였다. 데이터 분석은 퍼지셋 질적비교분석 방법과 인공신경망 분석을 통해 이루어졌으며, 분석 결과를 통해 인공지능 학습용 데이터 관련 학술적 및 실무적 시사점을 도출했다.
최근 전세계적으로 사회 모든 분야에서 인공지능 학습용 데이터에 관한 선행연구를 기반으로, 인공지능 학습용 데이터의 가치를 높이고 고품질 데이터를 확보하고자 하는 움직임이 늘고 있다. 따라서, 고품질 데이터를 확보하기 위한 구축사업에서는 품질관리가 매우 중요하다. 이에, 본 논문에서는 인공지능 학습용 데이터를 구축할 시 고품질데이터 확보를 위한 품질관리와 그에 따른 구축공정별 개선방안을 제시하였다. 특히, 인공지능 학습을 위해 구축되는 비정형데이터는 데이터 품질의 80% 이상이 구축과정에서 결정된다. 본 논문에서는 비정형데이터 이미지/영상데이터에 대한 품질검사를 통해 구축단계에서의 획득, data cleaning, labeling 모델에서 발생된 검사절차 및 문제 요소를 해결함으로써 고품질 데이터 확보 방안을 제시하였으며, 제시한 방안을 토대로 인공지능 학습용 데이터 구축에 참여하는 연구단체와 사업자들에게 데이터의 품질편차를 극복하기 위한 대안이 될 것으로 기대된다.
본 논문에서는 머신러닝 학습에 있어 데이터 전처리의 중요성과 기존 데이터 전처리 기능을 가진 교육용 실습 플랫폼 서비스의 단점은 개선할 수 있는 데이터 전처리 학습을 위한 교육용 블록코딩 기반 실습 플랫폼을 제안한다. 머신러닝 모델의 학습데이터는 데이터 전처리에 따라 모델의 정확도에 큰 영향을 미치므로 데이터를 다양하게 활용하기 위해서는 전처리의 필요성을 깨닫고 과정을 정확하게 이해해야 한다. 따라서 데이터를 처리하는 과정을 이해하고 전처리를 직접 실행해 볼 수 있는 교육용 프로그래밍 언어 기반 D.I.Y 실습 플랫폼을 구현한다.
일반적으로 화자적응화는 이미 학습되어 있는 불특정 화자 모델을 표준모델로 하고 소량의 적응화용 발화로 추가적인 학습을 실시하여 특정화자 모델의 성능에 가깝게 하는 기술로서 연속음성 인식에 있어서 매우 중요하다. ML 추정법을 이용한 화자적응화는 카테고리마다 모델의 학습패턴들을 다수개 준비한 후 학습시에 일괄적으로 적용시켜 모델 파라메터를 추정 갱신하므로 추가되는 화자데이터에 대해 데이터를 모두 공급하여야 한다. 본 연구에서는 문발화 데이터의 음절단위를 자동추출한 후 추가되는 화자데이터가 주어질 때 마다 적응화할 수 있는 화자적응화 방법을 검토하였다. 이 방법은 문발화 데이터를 잘라내지 않고 음절 단위를 자동추출시켜 추가 데이터마다 최대 사후확률 추정법을 이용하여 적응화 시키는 것으로 수소의 데이터로서도 적응화를 가능하게 하는 것이다. 본 연구에서 사용되는 음성데이터는 신문사설에서 발췌한 연속음성 10문장을 사용하고, 이 음성 데이터중 6명분은 HMM 학습용으로 하고 나머지 3명분은 적응화용 및 평가용 데이터로 사용하였다. 6명의 화자를 DDCHMM으로 학습하고 나머지 3명분을 MAP법으로 적응화시켰다. 그 결과 적응전과 비교해 볼 때 약 32%의 인식율 향상을 얻을 수 있었다.
웹상의 교육용 학습물에 대한 탐색과 기술을 위한 다수의 표준적 메타데이터들이 개발되어왔다. 그러나 이러한 메타데이터들은 학습물이 지닌 고유한 자료적 특성 및 멀티미디어와 관련한 기술에 있어서 여러 가지 문제들을 지녀왔다. 애플리케이션 프로화일은 기존의 표준적 메타데이터 시스템들이 지닌 경직성에서 벗어나 다양한 응용환경을 지원하기 위한 방편으로 점차 그 이용이 확대되어 가고 있다. 이 연구에서는 교육용 학습물의 기술을 위한 애플리케이션 프로화일 작성을 위하여 웹상에서 이용 가능한 멀티미디어 형식의 학습물에 대한 기술과 탐색에 필수적인 엘리먼트들을 선별하고 이에 상응하는 XML스키마작성를 모색하였다.
4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.
교육용 게임의 메타데이터 개발은 게임 콘텐츠로서, 독립적인 학습 자원으로서, 또 게임 기반 LCMS에서 학습 컴포넌트로 활용되기 위해서는 매우 중요한 작업이다. 그러나 에듀테인먼트와 교육용 게임 시장은 신생산업 분야인 관계로 체계적인 메타데이터 개발이 진행되지 못했다. 따라서 본 논문은 먼저 교육용 게임 메타데이터 설계의 방법을 수립하고 이에 따라 메타데이터 프로토타입을 개발하였다. 그리고 추출된 메타데이터 요소를 전문가 집단의 검증을 거쳐 교육용 게임의 메타데이터로 정의하였다. 본 연구에 의해 개발된 교육용 게임의 메타데이터 프로토타입이 표준화 단계를 거쳐 공영 기관에 의해 운영된다면 학습자와 교수자, 개발 기관에게 검색과 관리, 재사용의 편리함을 제공하고 중복 투자 방지 등의 효과를 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.