• 제목/요약/키워드: 학습열의

검색결과 691건 처리시간 0.028초

스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석 (A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

뉴럴 디코딩의 원리와 최신 연구 동향 소개 (Principles and Current Trends of Neural Decoding)

  • 김광수;안정열;차성광;구교인;구용숙
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.342-351
    • /
    • 2017
  • 뉴럴 디코딩은 뉴론이 발화한 스파이크 트레인으로부터 뉴론에 인가된 원 자극을 추정하는 작업을 말한다. 디코딩은 뉴론들끼리 어떻게 신호를 주고 받는 지를 이해함으로써 궁극적으로 뇌가 어떻게 정보처리를 하는 지 이해하는 기초적인 작업이다. 이 논문에서 우리는 3가지 뉴럴 디코딩 방법, 즉 빈도 디코딩, 시간 디코딩, 군집 디코딩 방법에 대해 설명하겠다. 빈도 디코딩은 자극에 대한 스파이크의 발화빈도 정보를 이용하여 자극을 복원하는 방법을 말한다. 역사적으로 가장 먼저 시도되었고 가장 간단한 디코딩 방법이다. 그러나 정수 개인 스파이크 개수로부터 빈도를 계산하는 과정에서 빈도자체가 불연속이고 양자화될 가능성이 높기 때문에 간단하고 정적인 자극이 아닌 경우 빈도 디코딩으로는 자극을 복원하기 어렵다는 한계를 가지고 있다. 시간 디코딩은 스파이크 발생 빈도가 아닌 개별 스파이크들의 발생시각을 이용한 디코딩 방법을 말하며 실제 빠르게 변화하는 자극의 경우 신경세포는 빈도 디코딩이 아니라 시간 디코딩을 통해 자극을 추정하는 것으로 이해되고 있다. 군집 디코딩은 단일 신경세포가 아닌 군집 신경세포로부터 자극을 복원하는 방법이다. 군집 디코딩은 단일 신경 세포 디코딩에 비해 신경 세포의 가변성에 따른 불확실성을 감소시킬 수 있고 서로 다른 자극의 특성을 동시에 표현할 수 있다는 장점을 갖는다. 이 논문에서는 먼저 세 가지 뉴럴디코딩 방법에 대해 소개하고 정보이론이 뉴럴디코딩에 어떻게 적용되는 지를 다룬 후 마지막으로 최근에 각광받고 있는 기계학습 방법에 의한 뉴럴 디코딩에 대해 다루도록 하겠다.

MOOC(Massive Open Online Course)의 근원적인 문제점들에 대한 비판적 고찰 (A Critical Review on the Inherent Problems of MOOC)

  • 양단희
    • 한국융합학회논문지
    • /
    • 제6권6호
    • /
    • pp.293-299
    • /
    • 2015
  • MOOC(Massive Open Online Course)란 대단위로 누구나 무료로 수강할 수 있는 온라인 강좌이다. 이러한 MOOC가 기존 대학체계를 무너뜨리고, 교육의 새 지평을 열 것이라는 전망이 있었다. 그러나 MOOC는 기존의 고등교육기관을 위협할 것이라는 최초의 전망과는 다른 양상으로 진행되고 있다. 그래서 본 연구는 MOOC의 허와 실을 드러냄으로써 MOOC를 우리 고등교육의 실정에 맞게 제작하고 활용할 수 있는 논의의 시발점을 마련하고자 한다. MOOC는 기본적으로 온라인 교육이므로 기존 온라인 교육의 본질적인 문제점인 '상호작용, 감독 및 평가'의 문제를 그대로 계승할 수밖에 없다. 그리고 새로이 추가된 'Massive' 개념은 교육 현장에서 가장 민감한 부분인 강좌당 학생 수 문제를 불러일으키며, 'Open' 개념은 MOOC가 불특정 다수를 염두에 둔 강좌이므로 맞춤형 교육에 역행된다. 결론적으로 MOOC는 자기 주도적 학습 능력이 매우 탁월한 학습자들과 전통적인 온라인 고등교육기관에도 접근할 수 없는 사람들을 위한 교육 서비스로 자리매김 되고, 대학에서는 Flipped Learning의 수단으로 사용될 가능성이 매우 높다. 그러므로 향후 MOOC에서는 이 점이 고려되어 강좌의 대상에 맞게 차별화되어 개발될 필요가 있다.

HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화 (Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms)

  • 오성권;박호성
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.487-496
    • /
    • 2000
  • 본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.

  • PDF

메콩강 유출모의를 위한 물리적 및 데이터 기반 모형의 비교·분석 (Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river)

  • 이기하;정성호;이대업
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.503-514
    • /
    • 2018
  • 최근 기후변화 및 유역개발로 인하여 메콩강 유역의 수문환경이 급격히 변화하고 있으며, 메콩강을 공유하는 국가의 수재해 예방 및 지속가능한 수자원개발을 위해서는 메콩강 주요지점에서의 유량 정보의 분석 및 예측이 요구된다. 본 연구에서는 물리적 기반의 수문모형인 SWAT과 데이터기반 딥러닝 알고리즘인 LSTM을 이용하여 메콩강 하류 Kratie 지점의 유출모의를 수행하고, 유출모의 정확도 및 두 가지 방법론의 장 단점을 비교 분석한다. SWAT 모형의 구축을 위해 범용 입력자료(지형: HydroSHED, 토지이용: GLCF-MODIS, 토양: FAO-Soil map, 강우: APHRODITE 등)을 이용하였으며 warming-up 및 매개변수 보정 후 2003~2007년 일유량 모의를 수행하였다. LSTM을 이용한 유출모의의 경우, 딥러닝 오픈소스 라이브러리인 TensorFlow를 활용하여 Kratie 지점기준 메콩강 상류 10개 수위관측소의 두 기간(2000~2002, 2008~2014) 일수위 정보만을 이용하여 심층신경망을 학습하고, SWAT 모형과 마찬가지로 2003~2007년을 대상으로 Kratie 지점에 대한 일수위 모의 후 수위-유량관계곡선식을 이용하여 유출량으로 환산하였다. 두 모형의 모의성능 비교 검토를 위하여 모의기간에 대해 NSE (Nash-Sutcliffe Efficiency)을 산정한 결과, SWAT은 0.9, LSTM은 보다 높은 0.99의 정확도를 나타내는 것으로 분석되었다. 메콩강과 같은 대유역의 특정 지점에 대한 수문시계열 자료의 모의를 위해서는 다양한 입력자료를 요구하는 물리적 수문모형 대신 선행 시계열자료의 변동성을 기억 학습하여 이를 예측에 반영하는 LSTM 기법 등 데이터기반의 심층신경망 모형의 적용이 가능할 것으로 판단된다.

베이비부머의 자기효능감, 사회적 자본, 경제적 준비도가 창업의도에 미치는 영향 (The Effect of Baby Boomer's Self-Efficacy, Social Capital, and Economic Preparation on Entrepreneurial Intention)

  • 이종열;허철무
    • 디지털융복합연구
    • /
    • 제18권10호
    • /
    • pp.41-50
    • /
    • 2020
  • 베이비부머들의 대량 은퇴를 맞이하여 이들의 진로 전환이나 창업이 새로운 연구 과제로 부각되고 있다. 본 연구는 은퇴를 시작한 베이비부머들이 인생 2막으로 시작하는 창업에 대해 연구를 한 것이다. 베이비부머들의 창업의도에 영향을 미칠 요인들을 중심으로 연구 모형을 구성하였다. 연구 모형을 검정하기 위해 베이비부머를 대상으로 설문조사를 하였으며, 그중 유효한 204명을 분석의 대상으로 삼았다. 가설 검정은 AMOS 23 통계 패키지를 활용하여 구조방정식으로 하였다. 가설 검정 결과 베이비부머의 창업과 관련한 자기효능감, 사회적 자본은 창업의도에 정(+)의 유의한 영향 관계가 있었다. 경제적 준비도는 창업의도에 유의한 부(-)의 영향 관계가 있는 것으로 나타났다. 사회적 자본이 베이비부머의 창업의도에 가장 영향을 미치는 것으로 나타났다. 한편, 성취 경험이나 롤 모델 학습 경험 등이 자기효능감에 영향을 미치는 선행 변수였다. 이들의 관계를 검정한 결과 성취 경험, 롤 모델 학습 경험은 자기효능감에 정(+)의 유의한 영향 관계가 있는 것으로 나타났다. 연구 결과를 바탕으로 학술적 시사점과 실무적 시사점을 제시하였다.

기체의 성질에 대한 중·고등 학생들의 오개념에 관한 연구 (The Study of Students' Misconception about the Properties of Gas in Secondary School)

  • 유승아;구인선;김봉곤;강대호
    • 대한화학회지
    • /
    • 제43권5호
    • /
    • pp.564-577
    • /
    • 1999
  • 본 연구는 학생들이 갖고 있는 입자개념과 분자운동에 관한 개념을 바탕으로 기체의 상태변화, 분자운동, 압력과 부피, 기체법칙 등 기체의 성질과 관련된 중${\cdot}$고등학생들의 오개념을 조사하고, 그 오개념의 분포상황을 고찰함으로서 개념 학습의 효율화를 추구하고, 교사에게는 관련 단원의 학습 전개에 도움을 주고자 하였다. 이를 위해 중학교 3학년 1O0명, 고등학교 2학년 150명을 대상으로 기체의 성질과 관련된 개념조사 문항지를 개발하여 오개념의 유형을 조사하엿다. 그 결과 학생들은 기체의 성질에 대한 다양한 오개념을 가지고 있었으며, 주 오개념은 다음과 같다.(1) '기체 분자들끼리 부딪혀 에너지를 방츨한다' 또는 '기체 분자들 사이에 공기가 채워져 압력이 나타난다'를 비롯하여 '압력이 작용하는 방향은 중력 방향과 관련 있다', (2) 온도에 따른 부피변화에서 '분자가 열을 받으면 분자의 크기가 커져 부피가 증가한다'와 '분자수가 증가해 분자들의 운동이 활발하다', (3) 고도에 따른 압력과 부피 개념에서는 지상에서 높이 을라감에 따라 압력이 낮아지는 것은 온도가 낮아지기 때문이다'와 '기체 분자의 압력은 기체분자의 충돌 수에 반비례한다', (4) '분자의 크기가 다르므로 같은 부피에 존재하는 분자수가 다르다' 등이었다.

  • PDF

시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지 (Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches)

  • 정시훈;김영준;박수민;임정호
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1077-1093
    • /
    • 2020
  • 해수면 온도는 전 세계 해양, 기상 현상에 영향을 주고 해양 환경 변화와 생물에게 영향을 주는 중요한 요소이다. 특히, 우리나라 남해안을 비롯한 연안 지역의 경우 어업 및 양식업 등의 수산업이 많이 발달하여, 매년 고수온 현상으로 인한 사회·경제적 피해가 발생하고 있다. 따라서 위성 자료와 같은 광범위한 지역을 감시할 수 있는 자료를 활용한 해수면 온도 및 공간적 분포의 예측기술 개발을 통하여 피해를 예방할 수 있는 시스템을 구축할 필요가 있다. 해수면 온도 예측은 기존의 수치 모델을 통해서 예측을 진행하였지만, 다수의 역학적 요인들을 사용하여 예측 결과 산출 시 복잡함이 존재한다. 최근 기계학습 및 딥러닝 기법이 발달함에 따라 해양 분야의 예측에 적용하는 연구가 진행되고 있다. 본 연구는 그 중 시·공간적인 일관성 및 정확도가 높은 장단기 기억(Long Short Term Memory, LSTM)과 합성곱 장단기 기억(Convolutional Long Short Term Memory, ConvLSTM) 딥러닝 기법을 사용하여 남해지역의 해수면온도 예측 및 2017년부터 2019년까지의 고수온 발생 건에 대해서 예측 결과의 공간 분포와 공간 분포와 예측 가능성에 대해 분석을 하였다. 1일 예측 모델의 정확도는 RMSE 기준으로 ConvLSTM(전체: 0.33℃, 봄: 0.34℃, 여름: 0.27℃, 가을: 0.32℃, 겨울: 0.36℃)이 LSTM 기반의 예측 모델(전체: 0.40℃, 봄: 0.40℃, 여름: 0.48℃, 가을: 0.39℃, 겨울: 0.34℃)보다 우수한 성능을 보였다. 2017년 고수온 발생 사례에 대해 해수면 온도 예측과 고수온 탐지 성능에서 ConvLSTM은 5일까지 경보를 탐지하였지만, LSTM의 경우 2일 예측 이후 해수면 온도를 과소 추정하는 경향이 커짐에 따라 탐지하지 못하였다. 시공간적인 해수면 온도 예측 시 ConvLSTM이 LSTM에 비해 적절한 모델로 판단된다.

인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정 (Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge)

  • 옥수열;문현수;전방조;임윤묵
    • 대한토목학회논문집
    • /
    • 제34권6호
    • /
    • pp.1655-1665
    • /
    • 2014
  • 구조물의 변위이력은 구조물의 전체적인 거동을 나타내는 인자의 시간에 대한 이력이므로 이를 추정하는 것은 매우 중요하며, 일반적으로 구조물의 상태를 평가하는데 있어 직관적으로 신뢰할 수 있는 물리량이다. 특히, 교량의 경우 차량 하중에 의해 발생되는 수직 변위를 알아내는 것은 교량에 발생할 수 있는 문제점을 미연에 확인할 수 있어 매우 중요한 부분이다. 하지만 시공된 교량의 수직 변위를 측정하는 것은 실험여건 및 장비의 제약조건 등으로 인해서 직접적으로 측정하는 것이 매우 힘든 실정이다. 본 연구에서는 대상 교량들에 대한 제약조건을 극복하고 변위응답을 추정할 수 있는 방안을 제시하기 위해 임의의 차량하중에 의해서 측정되는 변형률과 변위를 인공신경망에 적용하였다. 인공신경망에 적용하는 축방향 변형률과 수직방향 변위에 대한 학습 자료를 획득하기 위해서 수치해석을 수행하였으며, 실제 교통 상황을 반영하기 위해서 교량을 통과하는 차량의 종류와 차간 거리에 대한 차량이동하중 시나리오를 작성하여 시공된 교량의 실제 교통상황에 따른 차량 이동 하중이 가해지도록 모델링하였다. 인공신경망을 이용한 학습 결과에 따라 임의의 하중에 의해 발생되는 교량의 변형률에 대한 변위를 추정하였고, 인공신경망을 사용하여 추정된 변위 결과가 수치해석을 통한 변위를 잘 표현하는 것을 확인하였다.

SpatioTemporal GIS를 활용한 도시공간모형 적용에 관한 연구 / 인구분포모델링을 중심으로

  • 남광우;이성호;김영섭;최철옹
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2002년도 춘계학술대회논문집
    • /
    • pp.127-141
    • /
    • 2002
  • GIS환경에서 도시모형(urban model)의 적용을 목적으로 사회·경제적 데이터(socio-economic data)를 활용하는 과정은 도시현상이 갖는 복잡성과 변동성으로 인해 하나의 특정시간에서의 상황을 그대로 저장한 형태인 스냅샷 모형(snapshot model)만으로는 효율적인 공간분석의 실행이 불가능하다. 또한 도시모형을 적용하는 과정에서 GIS의 대상이 되는 공간, 속성, 시간의 정의는 분석목적에 따라 다르게 정의되어질 수 있으며 이에 따라 상이한 결과가 도출될 수 있다. 본 연구는 30년 간의 부산시 인구분포의 동적 변화과정 관측을 위해 시간개념을 결합한 Temporal GIS를 구축하고 이를 활용하여 인구밀도모형 및 접근성모형을 적용하는 과정을 통해 보다 효율적이고 다양한 결과를 제시할 수 있는 GIS 활용방안을 제시하고자 하였다. 흔히 공간현상의 계량화와 통계적 기법의 적용을 위한 데이터 처리과정은 많은 오차와 오류를 유발할 수 있다. 이러한 문제의 해결을 위해서는 우선적으로 분석목적에 맞는 데이터의 정의(Data Definition), 적용하고자 하는 모형(Model)의 유용성 검증, 적절한 분석단위의 설정, 결과해석의 객관적 접근 등이 요구된다. 이와 더불어 변동성 파악을 위한 시계열 자료의 효율적 처리를 위한 방법론이 마련되어져야 한다. 즉, GIS환경에서의 도시모형의 적용에 따른 효율성과 효과성의 극대화를 위해서는 분석목적에 맞는 데이터모델의 설정과 공간DB의 구축방법이 이루어져야 하며 분석가능한 데이터의 유형에 대한 충분한 고려와 적용과정에서 분석결과에 중대한 영향을 미칠 수 있는 요소들을 미리 검증하여 결정하는 순환적 의사결정과정이 필요하다., 표준패턴을 음표와 비음표의 두개의 그룹으로 나누어 인식함으로써 DP 매칭의 처리 속도를 개선시켰고, 국소적인 변형이 있는 패턴과 특징의 수가 다른 패턴의 경우에도 좋은 인식률을 얻었다.r interferon alfa concentrated solution can be established according to the monograph of EP suggesting the revision of Minimum requirements for biological productss of e-procurement, e-placement, e-payment are also investigated.. monocytogenes, E. coli 및 S. enteritidis에 대한 키토산의 최소저해농도는 각각 0.1461 mg/mL, 0.2419 mg/mL, 0.0980 mg/mL 및 0.0490 mg/mL로 측정되었다. 또한 2%(v/v) 초산 자체의 최소저해농도를 측정한 결과, B. cereus, L. mosocytogenes, E. eoli에 대해서는 control과 비교시 유의적인 항균효과는 나타나지 않았다. 반면에 S. enteritidis의 경우는 배양시간 4시간까지는 항균활성을 나타내었지만, 8시간 이후부터는 S. enteritidis의 성장이 control 보다 높아져 배양시간 20시간에서는 control 보다 약 2배 이상 균주의 성장을 촉진시켰다.차에 따른 개별화 학습을 가능하게 할 뿐만 아니라 능동적인 참여를 유도하여 학습효율을 높일 수 있을 것으로 기대된다.향은 패션마케팅의 정의와 적용범위를 축소시킬 수 있는 위험을 내재한 것으로 보여진다. 그런가 하면, 많이 다루어진 주제라

  • PDF