• Title/Summary/Keyword: 학습기반

Search Result 10,182, Processing Time 0.039 seconds

Flood Mapping Using Modified U-NET from TerraSAR-X Images (TerraSAR-X 영상으로부터 Modified U-NET을 이용한 홍수 매핑)

  • Yu, Jin-Woo;Yoon, Young-Woong;Lee, Eu-Ru;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1709-1722
    • /
    • 2022
  • The rise in temperature induced by global warming caused in El Nino and La Nina, and abnormally changed the temperature of seawater. Rainfall concentrates in some locations due to abnormal variations in seawater temperature, causing frequent abnormal floods. It is important to rapidly detect flooded regions to recover and prevent human and property damage caused by floods. This is possible with synthetic aperture radar. This study aims to generate a model that directly derives flood-damaged areas by using modified U-NET and TerraSAR-X images based on Multi Kernel to reduce the effect of speckle noise through various characteristic map extraction and using two images before and after flooding as input data. To that purpose, two synthetic aperture radar (SAR) images were preprocessed to generate the model's input data, which was then applied to the modified U-NET structure to train the flood detection deep learning model. Through this method, the flood area could be detected at a high level with an average F1 score value of 0.966. This result is expected to contribute to the rapid recovery of flood-stricken areas and the derivation of flood-prevention measures.

Impacts of Seasonal and Interannual Variabilities of Sea Surface Temperature on its Short-term Deep-learning Prediction Model Around the Southern Coast of Korea (한국 남부 해역 SST의 계절 및 경년 변동이 단기 딥러닝 모델의 SST 예측에 미치는 영향)

  • JU, HO-JEONG;CHAE, JEONG-YEOB;LEE, EUN-JOO;KIM, YOUNG-TAEG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.49-70
    • /
    • 2022
  • Sea Surface Temperature (SST), one of the ocean features, has a significant impact on climate, marine ecosystem and human activities. Therefore, SST prediction has been always an important issue. Recently, deep learning has drawn much attentions, since it can predict SST by training past SST patterns. Compared to the numerical simulations, deep learning model is highly efficient, since it can estimate nonlinear relationships between input data. With the recent development of Graphics Processing Unit (GPU) in computer, large amounts of data can be calculated repeatedly and rapidly. In this study, Short-term SST will be predicted through Convolutional Neural Network (CNN)-based U-Net that can handle spatiotemporal data concurrently and overcome the drawbacks of previously existing deep learning-based models. The SST prediction performance depends on the seasonal and interannual SST variabilities around the southern coast of Korea. The predicted SST has a wide range of variance during spring and summer, while it has small range of variance during fall and winter. A wide range of variance also has a significant correlation with the change of the Pacific Decadal Oscillation (PDO) index. These results are found to be affected by the intensity of the seasonal and PDO-related interannual SST fronts and their intensity variations along the southern Korean seas. This study implies that the SST prediction performance using the developed deep learning model can be significantly varied by seasonal and interannual variabilities in SST.

Content Analysis of the Mesozoic Geology of the Korean Peninsula in Earth Science II Textbooks: Focusing on Consistency within and among Textbooks, and with Scientific Knowledge (지구과학II 교과서의 한반도 중생대 지질 내용 분석: 교과서 내·교과서 간·과학 지식과의 일치 여부를 중심으로)

  • Jung, Chanmi;Yu, Eun-Jeong;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.324-347
    • /
    • 2022
  • Geological information on the Korean Peninsula plays a significant role in science education because it provides a basic knowledge foundation for public use and creates an opportunity to learn about the nature of geology as a historical science. In particular, the Mesozoic Era, when the Korean Peninsula experienced a high degree of tectonic activity, is a pivotal period for understanding the geological history of the Korean Peninsula. This study aimed to analyze whether content regarding the geology of the Mesozoic Era are reliably and consistently presented in the 'Geology of the Korean Peninsula' section of Earth Science II textbooks based on the 2015 revised curriculum. Four textbooks for Earth Science II were analyzed, focusing on the sedimentary strata, tectonic movement, and granites of the Mesozoic Era. The analysis items were terms, periods, and rock distribution areas. The consistency within and among textbooks and of textbooks and scientific knowledge was analyzed for each analysis item. Various inconsistencies were found regarding the geological terms, periods, and rock distribution areas of the Mesozoic Era, and suggestions for its improvement were discussed based on these inconsistencies. It is essential to develop educational materials that are consistent with the latest scientific knowledge through collaboration between the scientific and educational communities.

A study on the Development Process of Theater Education Programs according to Changes in Cultural Arts Education Facilities (문화예술교육 시설 변화에 따른 연극 교육프로그램 개발과정 연구)

  • Park, Nahyun
    • Trans-
    • /
    • v.12
    • /
    • pp.223-244
    • /
    • 2022
  • The rapid change of the culture and art environment is led to new art & cultural education and differences in culture and art education facilities, away from the traditional closed space culture and art education. Phenomena such as plays out of the theater, exhibitions out of the art museum, and pictures taking a walk indicate that cultural and artistic educational facilities can no longer stay in the existing paradigm and are changing along with the changes in the cultural and creative world. Therefore, to develop a site-specific theater education program centered around a specific place rather than a theater or studio, in line with the changing times of cultural and artistic educational facilities, this researcher analyzes Brecht's radio play experiment and the recent performative performance experiment. Furthermore, using the regional and community values of arts and culture education confirmed as the motive for research on site-specific theater programs, I analyze the implementation and application process by experimenting with theater programs out of the theaters and studios. As a prior study, research on site-specific performances is being conducted relatively actively, but earlier studies were dealing only with the Ligna group performance cases are lacking. However, I would like to use the previous research on site-specific performance cases as an epistemological background. As a result of the study, for the place-specific theater program through a total of 10 learners, a text based on a specific place was created that did not depend on traditional literary texts. Through this, the possibility of a site-specific theater education program could be confirmed.

Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps (정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화)

  • Choi, In Ha;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.363-369
    • /
    • 2021
  • High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.

Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models (HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할)

  • Kim, Hyungwoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Kim, Jinsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.913-924
    • /
    • 2022
  • In this paper, we presented a database construction of undersea images for the Habitats of Ecklonia cava and Sargassum and conducted an experiment for semantic segmentation using state-of-the-art (SOTA) models such as High Resolution Network-Object Contextual Representation (HRNet-OCR) and Shifted Windows-L (Swin-L). The result showed that our segmentation models were superior to the existing experiments in terms of the 29% increased mean intersection over union (mIOU). Swin-L model produced better performance for every class. In particular, the information of the Ecklonia cava class that had small data were also appropriately extracted by Swin-L model. Target objects and the backgrounds were well distinguished owing to the Transformer backbone better than the legacy models. A bigger database under construction will ensure more accuracy improvement and can be utilized as deep learning database for undersea images.

Development and Application of Middle School STEAM Program Using Big Data of World Wide Telescope (WWT 빅데이터를 활용한 중학교 STEAM 프로그램 개발 및 적용)

  • You, Samgmi;Kim, Hyoungbum;Kim, Yonggi;Kim, Heoungtae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.1
    • /
    • pp.33-47
    • /
    • 2021
  • This study developed a big data-based STEAM (Science, Technology, Engineering, Art & Mathematics) program using WWT (World Wide Telescope), focusing on content elements of 'solar system', 'star and universe' in the 2015 revised science curriculum, and in order to find out the effectiveness of the STEAM program, analyzed creative problem solving, STEAM attitude, and STEAM satisfaction by applying it to one middle school 176 students simple random sampled. The results of this study are as follows. First, we developed a program to encourage students to actively and voluntarily participating, utilizing the astronomical data platform WWT. Second, in the paired t-test based on the difference between the pre- and post-scores of the creative problem solving measurement test, significant statistical test results were shown in 'idea adaptation', 'imaging', 'analogy', 'idea production' and 'elaboration' sub-factors except 'attention task' sub-factor (p < .05). Third, in the paired t-test based on the difference between the pre- and post-scores of the STEAM attitude test, significant statistical test results were shown in 'interest', 'communication', 'self-concept', 'self-efficacy' and 'science and engineering career choice' sub-factors except 'consideration' and 'usefulness / value recognition' sub-factors (p < .05). Fourth, in the STEAM satisfaction test conducted after class application, the average values of sub-factors were 3.16~3.90. The results indicated that students' understanding and interest in the science subject improved significantly through the big data-based STEAM program using the WWT.

A Study on the Development of a Fire Site Risk Prediction Model based on Initial Information using Big Data Analysis (빅데이터 분석을 활용한 초기 정보 기반 화재현장 위험도 예측 모델 개발 연구)

  • Kim, Do Hyoung;Jo, Byung wan
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.245-253
    • /
    • 2021
  • Purpose: This study develops a risk prediction model that predicts the risk of a fire site by using initial information such as building information and reporter acquisition information, and supports effective mobilization of fire fighting resources and the establishment of damage minimization strategies for appropriate responses in the early stages of a disaster. Method: In order to identify the variables related to the fire damage scale on the fire statistics data, a correlation analysis between variables was performed using a machine learning algorithm to examine predictability, and a learning data set was constructed through preprocessing such as data standardization and discretization. Using this, we tested a plurality of machine learning algorithms, which are evaluated as having high prediction accuracy, and developed a risk prediction model applying the algorithm with the highest accuracy. Result: As a result of the machine learning algorithm performance test, the accuracy of the random forest algorithm was the highest, and it was confirmed that the accuracy of the intermediate value was relatively high for the risk class. Conclusion: The accuracy of the prediction model was limited due to the bias of the damage scale data in the fire statistics, and data refinement by matching data and supplementing the missing values was necessary to improve the predictive model performance.

Calibration of Thermal Camera with Enhanced Image (개선된 화질의 영상을 이용한 열화상 카메라 캘리브레이션)

  • Kim, Ju O;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.621-628
    • /
    • 2021
  • This paper proposes a method to calibrate a thermal camera with three different perspectives. In particular, the intrinsic parameters of the camera and re-projection errors were provided to quantify the accuracy of the calibration result. Three lenses of the camera capture the same image, but they are not overlapped, and the image resolution is worse than the one captured by the RGB camera. In computer vision, camera calibration is one of the most important and fundamental tasks to calculate the distance between camera (s) and a target object or the three-dimensional (3D) coordinates of a point in a 3D object. Once calibration is complete, the intrinsic and the extrinsic parameters of the camera(s) are provided. The intrinsic parameters are composed of the focal length, skewness factor, and principal points, and the extrinsic parameters are composed of the relative rotation and translation of the camera(s). This study estimated the intrinsic parameters of thermal cameras that have three lenses of different perspectives. In particular, image enhancement based on a deep learning algorithm was carried out to improve the quality of the calibration results. Experimental results are provided to substantiate the proposed method.

Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation (CAE 알고리즘을 이용한 레이더 강우 보정 평가)

  • Jung, Sungho;Oh, Sungryul;Lee, Daeeop;Le, Xuan Hien;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.453-462
    • /
    • 2021
  • As the frequency of localized heavy rainfall has increased during recent years, the importance of high-resolution radar data has also increased. This study aims to correct the bias of Dual Polarization radar that still has a spatial and temporal bias. In many studies, various statistical techniques have been attempted to correct the bias of radar rainfall. In this study, the bias correction of the S-band Dual Polarization radar used in flood forecasting of ME was implemented by a Convolutional Autoencoder (CAE) algorithm, which is a type of Convolutional Neural Network (CNN). The CAE model was trained based on radar data sets that have a 10-min temporal resolution for the July 2017 flood event in Cheongju. The results showed that the newly developed CAE model provided improved simulation results in time and space by reducing the bias of raw radar rainfall. Therefore, the CAE model, which learns the spatial relationship between each adjacent grid, can be used for real-time updates of grid-based climate data generated by radar and satellites.