• Title/Summary/Keyword: 학습과 정보이용

Search Result 5,956, Processing Time 0.037 seconds

BERT-based Document Summarization model using Copying-Mechanism and Reinforcement Learning (복사 메커니즘과 강화 학습을 적용한 BERT 기반의 문서 요약 모델)

  • Hwang, Hyunsun;Lee, Changki;Go, Woo-Young;Yoon, Han-Jun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.167-171
    • /
    • 2020
  • 문서 요약은 길이가 긴 원본 문서에서 의미를 유지한 채 짧은 문서나 문장을 얻어내는 작업을 의미한다. 딥러닝을 이용한 자연어처리 기술들이 연구됨에 따라 end-to-end 방식의 자연어 생성 모델인 sequence-to-sequence 모델을 문서 요약 생성에 적용하는 방법들이 연구되었다. 본 논문에서는 여러 자연어처리 분야에서 높은 성능을 보이고 있는 BERT 모델을 이용한 자연어 생성 모델에 복사 메커니즘과 강화 학습을 추가한 문서 요약 모델을 제안한다. 복사 메커니즘은 입력 문장의 단어들을 출력 문장에 복사하는 기술로 학습데이터에서 학습되기 힘든 고유 명사 등의 단어들에 대한 성능을 높이는 방법이다. 강화 학습은 정답 단어의 확률을 높이기 위해 학습하는 지도 학습 방법과는 달리 연속적인 단어 생성으로 얻어진 전체 문장의 보상 점수를 높이는 방향으로 학습하여 생성되는 단어 자체보다는 최종 생성된 문장이 더 중요한 자연어 생성 문제에 효과적일 수 있다. 실험결과 기존의 BERT 생성 모델 보다 복사 메커니즘과 강화 학습을 적용한 모델의 Rouge score가 더 높음을 확인 하였다.

  • PDF

Face Detection using Skin-tone Color Space Table (피부-색상 공간 테이블을 이용한 얼굴 검출)

  • 고경철;이양원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.381-384
    • /
    • 2002
  • 본 논문에서는 실험 영상으로부터 학습된 피부색상 정보를 이용하여 컬러 공간테이블을 생성한 후. 입력된 영상의 컬러와 공간정보를 학습된 피부색상 공간테이블로부터 비교, 분석하여 얼굴후보영역을 찾고자 하였다. 또한 추출된 후보영역의 레이블된 특징정보를 이용하여 지역적 특징을 찾아낸 후 얼굴 특징점의 위치에 따른 형태정보를 이용하여 신뢰할 수 있는 얼굴 영역을 검출하고자 하였다. 제안된 피부색상(Skin-tone)공간테이블은 변환하기 쉽고 계산이 빠른 RGB컬러 공간에서 실험, 평가되었으며, 실시간으로 입력된 영상의 정규화된 책상 값을 유사성 정도에 따라 레이블링하여 보다 빠른 얼굴 후보 영역의 검출과 검증을 할 수 있도록 하였다.

  • PDF

A Web-based Intelligent Tutoring System for Learner-centered learning by Level (학습자 중심의 수준별 학습을 위한 웹기반 지능형 교수 시스템)

  • 양형정;최숙영
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.248-259
    • /
    • 2002
  • 최근의 새로운 교수 학습 형태인 웹기반 교육에서의 가장 중요한 요소는 시.공간적으로 떨어져 있는 학습자의 학습 상황을 파악하고 분석하여, 학습자에게 적절한 학습내용과 과정을 제시하는 하는 것이 무엇보다도 중요하다. 본 연구에서는 웹기반 교수 시스템에서 학습자의 수준에 맞는 적합한 학습 내용과 평가 문제를 제공하고, 그 평가 결과를 분석하여 반복학습 및 심화학습을 효과적으로 제공하고, 차기 학습을 할 경우에 이에 기초하여 적절한 학습이 이루어질 수 있도록 한다. 이를 위해 코스웨어를 설계시 학습목표의 중요도, 학습내용의 난이도, 학습목표와 학습내용과의 관련성과 각 항목의 가중치를 고려한 퍼지 함수에 의해 퍼지 소속성을 가진 퍼지 언어 변수로 각 프레임에 대한 수준을 표현한다. 또한, 학습의 평가도 문제의 난이도, 관련학습 자료의 난이도, 관련 학습목표의 중요도, 각각의 관련성을 고려하여 퍼지 함수에 의해 언어 변수로 평가된다. 이와 같이 퍼지 함수를 이용함으로써 학습자의 수준을 분석하고, 이에 적절한 학습 및 평가 내용을 제공하는데 여러가지 다양하고 불확실한 요소들을 고려하여 처리함으로써 보다 융통성 있고 효과적인 교수 학습 방법이 될 수 있다.

  • PDF

A Study on Prediction of Parent School Satisfaction Using Educational Data Mining (교육데이터마이닝을 이용한 학부모 학교 만족도 예측에 관한 연구)

  • Yang, YouugBo;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.244-246
    • /
    • 2018
  • 학습관리시스템의 도입으로 학습자들은 다양한 형태로 학습하게 되고 데이터를 남기게 된다. 교육데이터마이닝은 다양한 형태로 기록되는 교육 데이터를 분석해서 유의미한 정보를 찾아 내는 방법이다. 교육데이터마이님을 활용하면 학생 개인의 학습성과 향상에 도움을 주거나 학습성과 예측 결과를 참고하여 부족한 부분을 지원해 줄 수도 있다. 기존 연구에서는 학습자의 행동 영역 특징이 학습성과에 영향을 끼친다는 것을 검증하기 위하여 나이브 베이즈, 의사결정트리, 신경망 기계학습알고리즘으로 데이터를 분석했다. 따라서 본 연구에서는 기존 연구를 확장하여 학습자의 행동 영역 특징이 학부모 학교 만족도에 영향을 끼치는지 여부를 확인하는 실험을 수행했으며 kNN, 의사결정트리, SVM 기계학습 알고리즘으로 데이터를 분석하였다. 분석결과 학습자의 행동 영역 특정이 학부모 학교 만족도에 영향을 미치는 것을 확인했다.

Learning performance of by the momentum and the bias learning method (모멘트와 바이어스 학습법에 의한 학습 성능)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • 근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.

  • PDF

Regression Model With High Reliability by Using Neural Networks (신경망을 이용한 고신뢰성의 회귀분석 모델)

  • Jo, Yong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

Iris Recognition System Using Back-Propagation and Higher Order Autocorrelation (신경망 학습과 Higher Order Autocorrelation을 이용한 홍채 인식 시스템)

  • Jeong Yu-Jeong;Jung Chai-Yeoung
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.895-898
    • /
    • 2004
  • 본 논문에서는 기존의 개인 식별 방법의 한계를 해결하는 대안으로 떠오르고 있는 생체인식 기술 중 인식률이 뛰어난 홍채인식 시스템에 대해 연구하고자 한다. 먼저 홍채인식 시스템의 구현을 위해 신호처리 분야에서 많이 사용되고 있는 wavelet 변환 중 Haar wavelet과 고차 국소 자기 상관 특징을 이용하여 홍채의 특징을 추출하여 특징벡터의 크기를 최소화 하였다. 또, 인식률을 높이기 위해 오류 역전파 학습 알고리즘을 이용하여 홍채패턴에 기반한 신원 확인 및 검증을 위한 개선된 방법을 제시하였다. 학습이 완료된 신경망에 대한 학습데이터와 테스트 데이터의 인식률을 실험한 결과 학습된 데이터는 평균 인식률 $97.4\%$, 테스트 데이터는 $95.5\%$의 인식률을 보였다.

  • PDF

Developing Reinforcement Learning based Job Allocation Model by Using FlexSim Software (FlexSim 소프트웨어를 이용한 강화학습 기반 작업 할당 모형 개발)

  • Jin-Sung Park;Jun-Woo Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.311-313
    • /
    • 2023
  • 병렬 기계 작업장에서 자원을 효율적으로 활용하기 위해서는 처리할 작업을 적절한 기계에 할당해야 한다. 특정 작업을 처리할 기계를 선택할 때 휴리스틱을 사용할 수도 있으나, 특정 작업장에 맞춤화된 휴리스틱을 개발하는 것은 쉽지 않다. 반면, 본 논문에서는 이종 병렬 기계 작업장을 위한 작업 할당 모형을 개발하는데 강화학습을 응용하고자 한다. 작업 할당 모형을 학습하는데 필요한 에피소드들은 상용 시뮬레이션 소프트웨어인 FlexSim을 이용하여 생성하였다. 아울러, stable-baseline3 라이브러리를 이용하여 강화학습 알고리즘을 생성된 에피소드들에 적용하였다. 실험 결과를 통해 시뮬레이션과 강화학습이 작업장 운영관리에 유용함을 알 수 있었다.

  • PDF

Document Autoclustering for Web Agent (웹 에이전트를 위한 문서 자동 분류)

  • 양찬범;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.54-56
    • /
    • 1999
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심정보를 학습하고 사용자가 필요로 한느 웹 상의 정보를 제공하는 시스템이다. 웹 에이전트는 사용자의 관심정보를 추출하기 위해서 귀납적 기계학습을 수행한다. 이때, 학습의 효율을 높이기 위해서는 관련이 있는 문서들을 그룹화하여 학습 시스템에 제공하여야 한다. 본 논문에서는 비감독 개념 학습 알고리즘인 COBWEB을 이용하여 사용자가 관심을 표시한 문서들의 분류트리를 생성한다. 분류트리는 귀납적 기계학습 시스템의 입력으로 사용될 수 있는 형태가 아니므로 분류 트리의 분석과 문서 분류 후처리 작업을 통해서 문서 집합을 생성해야 한다. 이를 위해서는 분류트리를 분석하여 초기 클러스터를 생성하고, 유사한 클러스터들의 병합을 수행한다. 본 논문에서 제안하는 문서 자동 분류 방식은 비감독 개념 학습 알고리즘이 생성한 문서 분류 트리의 분석을 통해서 충분한 유사도와 적절한 수의 문서를 포함하는 초기 클러스터를 생성할 수 있다. 그러므로 문서 분류의 후처리 작업인 클러스터의 병합 작업에서 불필요한 작업을 제거함으로서 보다 효과적이고 합리적인 문서 분류 작업을 수행한다.

  • PDF

Korean Compound Noun Decomposition Only Using Syllabic Information (음절 정보만 이용한 한국어 복합 명사 분해)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.33-39
    • /
    • 2003
  • 한국어에서는 복합 명사 생성이 매우 자유스럽다. 즉, 독립된 명사를 연속으로 붙여 쓰는 것이 가능하다. 하지만, 기계번역이나 정보 검색과 같이 복합 명사를 처리하는 시스템에서 정확한 분석을 위해서는 복합 명사를 다시 단일 명사들로 분해하는 과정이 필요하다. 본 논문에서는 한국어 복합 명사 분해를 위해 GECORAM(GEneralized Combination of Rule-based learning And Memory-based learning) 알고리듬을 제시한다. 규칙 학습 알고리듬의 장점은 생성된 학습 결과를 사람이 쉽게 이해할 수 있다는 점이지만, 다른 지도학습 알고리듬에 비해 성능이 떨어진다는 단점이 있다. 본 논문에서는 이를 위해 규칙 학습 알고리듬과 기억기반 학습을 결합하는 방법을 제시한다. 실험 결과, GECORAM 알고리듬은 규칙 기반 학습이나 기억 기반 학습을 단독으로 쓰는 경우보다 높은 정확도를 보였다.

  • PDF