• Title/Summary/Keyword: 하천 유량

Search Result 2,186, Processing Time 0.034 seconds

Comparison of Runoff Hydrographs based on the Moving Rainstorms (이동강우로 인한 유출수문곡선의 비교)

  • Cho, Yong-Soo;Jeon, Min-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1737-1741
    • /
    • 2007
  • Using kinematic wave equation, the influence of moving rainstorms to runoff was analysised with a focus on watershed shapes and rainfall distribution types. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. And the hydrographs were compared in the case of varing the rainstorm intensity and varing the rainstorm length in order to make the same total runoff volume. When the rainstorm intensity was varied the shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. The peak time of down and upstream moving strorms appeared latest in the case of the elongated shape basin, meanwhile at cross stream moving storms, the peak time of elongated shape basin is earlier than the others. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

  • PDF

Simulation of soil moisture in Hill-slope area using GSSHA model (분포형 수문모형(GSSHA)을 이용한 산지사면에서의 토양수분 모의)

  • Jang, Cheol-Hee;Kim, Hyeon-Jun;Kim, Sang-Hyeon;Noh, Seong-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1614-1618
    • /
    • 2007
  • 분포형 수문모형은 유역을 격자단위로 세분화하여 매개변수를 부여하고, 증발산, 침투, 지표면유출, 중간유출, 지하수유출, 하도흐름 등 여러 가지 수문요소를 해석하는 종합적인 수문모형이다. 지표면에 내린 강우의 증발 및 침투, 유출은 토양수분의 함량에 크게 의존하게 된다. 따라서 토양수분에 대한 적절한 모의가 분포형 수문모형의 정확도를 좌우하는 핵심이라 할 수 있다. 토양수분은 식물의 생장 및 가용수자원 산정 등에 있어서 중요한 요소로서 토양층 상부의 수 미터 내에 존재하는 수분의 양을 일컫는다. 토양수분의 공간적 시간적 특성들은 증발, 침투, 지하수 재충전, 토양침식, 식생분포 등을 지배하는 매우 중요한 요소라 할 수 있다. 강우로 인한 지면과 지표하에서의 순간적인 포화공간의 형성 및 유출의 생성을 포함하는 과정과 증발산 등은 모두 비포화대(vadose zone) 혹은 토양층에서의 토양수분의 함량에 크게 의존하게 된다(이가영 등, 2005) 본 연구에서는 토양수분에 대한 정밀측정 자료가 있는 설마천 유역 범륜사 사면에 대하여 분포형 수문모형의 토양수분 해석 능력을 평가하고자 하였다. 토양수분 모의에 사용된 격자기반의 분포형 수문모형은 미공병단에서 개발한 GSSHA(USACE, 2006) 모형이다. 모형의 입력자료는 정밀토양도와 현장측정에 의한 토양매개변수를 반영하여 구축하였고, 강우 및 기상자료는 2003년 1월 1일 ${\sim}$ 2004년 12월 31일의 1시간 자료를 이용하였다. 모의기간 중 2003년은 초기 토양수분값 등 초기조건의 영향을 줄이기 위한 웜업 (Warm-up)기간으로 설정하였고, 2004년의 모의결과를 토양수분 관측값과 비교하였다.업지역, 상업지역 등과 같이 지형적 특성에 따른 유량측정망을 구축하는 것이다.의 의사결정 지원 도구가 될 것이다. 따라서, 본 연구에서는 도시유역의 물순환 해석을 위한 일련의 과정, 즉 자료의 조사 및 취득에서부터 물순환 해석 모형을 이용한 정량적 현황파악, 물순환 개선 기법 및 평가를 수행함에 있어 주요 착안점 및 실무에서의 기술적 가이드를 제공하고자 하였으며, 보다 세밀한 도시유역의 물순환 해석을 위하여 우리나라와 일본에서 적용이 활발한 물리적 기반의 분포형 모형(WEP, SHER, SWMM)의 적용사례를 통하여 국내 도시하천의 물순환 해석에 활용함에 있어서의 실질적인 적용절차 등을 제시하고자 하였다. 한다.호강유역의 급격한 수질개선을 알 수 있다.世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에

  • PDF

Verification on the Design Formulas of Apron Length by Scour Analysis at Weir Downstream (보 하류부 세굴 분석을 통한 물받이공 길이 설계 공식 검토)

  • Ko, Dongwoo;Lee, Changhun;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.83-89
    • /
    • 2020
  • This hydraulic study analyzed the scour effect at fixed downstream weirs based on the changes in the upstream bed slope. The study was performed using six different bed slopes, that is, 0%, 2%, 3%, 4%, 7%, and 10% at 0.117 ㎥/s in all cases. The scour depth, scour length, and scour volume were measured using a broadband laser scanner to quantitatively analyze the scour at the downstream weir. This study also examined the adequacy of the designed apron length by comparatively analyzing the results of the scour experiments and the apron length calculated using conventional design standard formulas. The analysis of the local scour effect at the downstream weir showed that scour length and scour depth increased as the bed slope became steeper. A comparison between the results of the scour experiment and that of the conventional design formulas showed that both formulas of the National Construction Research Institute and the Bligh were distributed within the allowable values when there was no upstream bed slope. However, as the bed slope upstream of the weir gradually increased, the scour lengths of the apron deviated slightly from the values obtained from the conventional design formulas.

Microhabitat Analysis of Endangered Species (I), Cobitis choiiwith Rapid Decreases of Population by Environmental Pollution for a Habitat Replacement (환경오염에 의해 급감하는 멸종위기 1급 어종인 미호종개의 대체 서식지 마련을 위한 미소서식지 분석)

  • Kim, Jiyoon;An, Kwangguk
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.271-284
    • /
    • 2014
  • The objectives of this research were to analyse the microhabitat of Cobitis choii which is designated as an endangered fish species (I) and national monument species in Korea (No. 454), and provide valuable information of suitable replacement habitat in the future for a conservation of the population with rapid decreases by environmental pollution. Sampling and microhabitat analysis in three streams such as Baekgok, Yugu and Gap Stream, known as one of the least habitats in Korea showed that the mean number of Cobitis choii observed was 2.6. This result indicated that the richness was too low, so the species conservation was very urgent. Optimal physical microhabitat of the population was determined as environmental conditions with > 60% sand with 1 mm particle size, optimal water depth of 20 - 60 cm in the habitats, and the optimal current velocity of < 0.4 m/s. Under the circumstances of the microhabitat, optimal water volume (discharge) was 0 - 2 m3/s in the each sectional analysis and this reach was mainly composed of the stream section with intermittant slow runs and pools. These microhabitats were largely disturbed by physical modifications of habitat and chemical pollutions due to direct influences of nutrient-rich water inputs from the urban area and intensive agricultural pollutants. For these reasons, optimal habitat replacement are required in the future for the conservation of the species.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

Vegetation and Landscape Analysis and Management Methods of Ip-am Wetland in the Naejang National Park (내장산국립공원 입암습지의 식생 및 경관 변화와 관리방안)

  • Lee, Seon-Mi;Myeong, Hyeon-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • This study was performed to evaluate the Ip-am wetland located in the Naejang National Park by analyzing vegetation and landscape and to suggest management plans. We carried out field survey in 2013 and analyzed aerial photos in 1976 and 2010 for landscape change. As a result, the places that were paddy fields in the past were dominated by 5 communities such as Salix koreensis Community (21.6%), Persicaria thunbergii Community (2.8%), Phragmites communis Community (1.1%), Molinia japonica Community (4.9%), Persicaria thunbergii-Molinia japonica Community (0.5%). On the other hand, the places that were upper fields in the past were occupied mostly by Rosa multiflora Community (6.8%), Humulus japonicus-Rosa multiflora Community (42.0%), Humulus japonicus Community (10.6%). In order to maintain and manage the wetland, water should be supplied continuously by making use of the six among the seven reservoirs located in the upper part through the hydrological survey should be accomplished. In addition, it was necessary to reinforce the banks for minimizing water outflow. It contributes to prevent dry peat and decrease in decomposition speed. Thus, it is hard to invade and settle of terrestrial plants and then secondary succession would be delayed.

Assessment of Water Quality in Namdae-Stream, Yeongok-Stream and Sacheon-Stream Using Trophic Status and Epilithic Diatom Indices (부착규조지수와 영양단계 평가를 이용한 남대천, 연곡천과 사천천의 수질 평가)

  • Kim, Yong-Jin;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.117-128
    • /
    • 2010
  • The water qualities of Namdae-stream, Yeongok-stream and Sacheon-stream were examined, by using physicochemical factors, trophic status and epilithic diatoms from May 2008 to February 2009. The physicochemical water qualities of three streams were, except for some construction areas and sites of downstream, generally good, having less concentration than BOD of $2\;mg\;L^{-1}$. As for the sites of downstream, there were ongoing pollution such as graduation of nutrients in Namdae-stream and Sacheon-stream, due to salinity of seawater and topographical feature of the closed estuary. The examination of trophic status of Namdae-stream showed mesotrophic status in all the sites. Also, eutrophication was in progress as from the upstream to the downstream of Yeongok-stream, and Sacheon-stream showed eutrophic status in all its sites. As a result of the biological water quality assessment, Namdae-stream, excluding the downstream site, came out to be $\beta\sim\alpha$-oligosaprobic, and biological water quality was good, having TDI less than 50. Some construction sites and downstream site of Namdae-stream are $\beta$-mesosaprobic, and with the TDI over 70, the biological water quality assessment came out to be polluted. Yeongok-stream is $\beta\sim\alpha$-oligosaprobic, and its biological water quality is good, having TDI less than 40. Sacheon-stream, excluding the upstream site on May 2008 and February 2009, is $\beta\sim\alpha$-mesosaprobic, and its TDI over 70 shows that it has been polluted. The correlation analysis showed a high correlation in both DAlpo and TDI. Also, biological assessment of water quality (DAIpo, TDI) showed higher correlation with TSI rather than BOD.

Analysis of Fluvial Terraces at Kohyun River in Youngcheon City (경북 영천시 고현천의 하안단구 지형 분석)

  • Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.447-462
    • /
    • 2009
  • Kohyun River basin is located at southern parts of Taebaek Mountains and most of river basins consists of sedimentary rock. The aims of this study are to investigate the distribution characteristics and processes of fluvial terraces at Kohyun River, using scientific methods such as classification of fluvial landforms, analysis of geomorphological deposits, XRD and OSL age dating. In Kohyun River basin are three levels terraces from T1 to T3. Fluvial terraces are assumed to be erosional terraces according to deposited situation of alurium and existences of bedrock riverbed. From the result of OSL age dating, formation age of fluvial terrace 1(T1) is calculated about 37,000 yr.B.P.(MIS 3), and fluvial terrace 2(T2) is calculated about 113,000 yr.B.P.(MIS 5). Therefore, fluvial terraces at Kohyun River are assumed to be formed at warmer period in the glacial stages or cooler period in the interglacial stages. The incision rate of fluvial terrace 1 at Kohyun River is calculated to be 0.054m/ka, and the incision rate of fluvial terrace 2 is calculated to be 0.115m/ka. This results suggest to lower incision rate than other rivers in Korea because of low uplift rates and little discharge.