• Title/Summary/Keyword: 하천특성인자

Search Result 478, Processing Time 0.023 seconds

Statistical Methods to Evaluate the Occurrence Probability of Exotic Fish in Japan (일본 서식 외래 담수어종의 서식확률 평가를 위한 통계기법 연구)

  • Han, Mi-Deok;Chung, Wook-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.195-202
    • /
    • 2011
  • This study analyzed and modeled the relationships between the probabilities of two exotic species occurrence (i.e. largemouth bass and blue gill) and environmental factors such as climatic and geographical variables using Generalized Additive Models (GAM), Generalized Liner Models and Classification Tree Analysis (CTA). The most moderate occurrence probability of largemouth bass was predicted using GAM with an area under the curve (ADC) of 0.88 and Kappa of 0.42, while those of blue gill was suggested by using CTA with an AUC of 0.92 and Kappa of 0.44. The most significant environmental variable in terms of changes in deviance for both species was the annual air temperature for the occurrence probability. Dams had stronger effect on the occurrence of largemouth bass than blue gill. Model development and prediction for the occurrence probability of fish species and richness are necessary to prevent further spread of exotic fishes such as largemouth bass and blue gill because they can threaten habitats of native river ecosystem through various mechanisms.

Measurements of Ultrasound Attenuation Coefficient at Various Suspended Sediment Concentrations (부유물 농도 변화에 따른 초음파 신호의 감쇠계수 측정)

  • Lee, Changil;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Coastal water including estuaries has distinctive environmental characteristics where sediments are transported and deposited by flowing river water, providing an environment in which fluid mud layers can be formed. Acoustic method is mostly used to detect or monitor the fluid mud layer. However, since sound propagating in this layer suffers severe attenuation, it is important to estimate the accurate attenuation coefficient for various concentrations of fluid mud layer for the successful use of the acoustic method. In this paper, measurement results of attenuation coefficient for 3.5, 5, and 7.5 MHz ultrasounds were presented. The measurements were made in a small-size water tank in which suspended sediment samples with various sediment concentrations were formed using kaolinite powder. The results were compared to the model predictions obtained by attenuation coefficient model in which the mean grain size (called as Mass-median-diameter, D50) was used as input parameter. There were reasonable agreements between measured attenuation coefficients and model outputs predicted using the particle range of D50 ${\pm}20%$. The comparison results imply that although the suspended sediments consist of various-sized particles, sound attenuation might be greatly influenced by amount of particle with a size which has a larger attenuation than that of any particle in the suspended sediments for the frequency used.

Water Quality Trend Analysis based on Watershed Characteristics in Agriculture Reservoirs (농업용저수지 유역환경특성에 따른 수질경향 분석)

  • Kim, Ho-Sub;Choi, Eun-Mi;Kim, Dong-Woo;Kong, Dong-Soo;Kim, Kyung-Man;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.214-222
    • /
    • 2007
  • This study was conducted to assay the relationship between the characteristics of watershed and water quality, and to evaluate water quality characteristics of the classified types by TSI deviation analysis with the collected data from 490 reservoir. Relatively shallow depth (<5m) reservoirs out of selected 490 appeared to be eutrophic. The mean TP concentration in reservoirs with the PFA+UFA/watershed area of above 30% was ${\geq}0.1$ mg $L^{-1}$. The mean TN concentration in reservoirs with the PFA/watershed area of above 25% was ${\geq}2.6$ mg $L^{-1}$. Based on the TSI deviation analysis, water quality parameters in TYPE III reservoirs were in high concentration compared to other reservoirs types. Characteristics of Type III generally showed eutrophic, small DA/RA ratio, shallow depth, and large paddy field and upland field to watershed ratio compared to other types of reservoirs. Both water quality and morpho-physical parameters, Type I and II reservoirs were similar with the exceptions of BOD and chi. ${\alpha}$ concentration. Phosphorus in Type I reservoirs was not the primary limiting factor on algal growth, but significant decrease chl. ${\alpha}$ concentration with the increasing TN/TP indicated that phosphorus was the possible secondary limiting factor. Overall results indicated that type of land use, such as PFA and UFA area in watershed, was important parameters for the assessment of water quality characteristics, and phosphorus was limiting nutrient on algal growth in 490 reservoirs.

The derivation of GIUH by means of the lag time of Nash model (Nash 모형의 지체시간을 이용한 GIUH 유도)

  • Kim, Joo-Cheol;Yoon, Yeo-Jin;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.801-810
    • /
    • 2005
  • The lag time is one of the most important factors for estimating a flood runoff from streams. It is well known to be under the influence of the morphometric properties of basins which could be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) is applied for calculating the lag time of geomorphological instantaneous unit hydrograph(GIUH) at the basin outlet. The lag time is obtained from the observed data of rainfall and runoff by using the method of moments suggested by Nash(1957), and the procedure based on geomorphology is used for GIUH. The relationships between the basin morphometric properties and the hydrological response are discussed as applied to 3 catchments In Korea. Additionally, the shapes of equivalent ellipse are examined how then are transformed from upstream area to downstream one. As a result, the relationship between the hydrological response and descriptors is shown to be comparatively good, and the shape of ellipse is presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

Potential Changes in the Distribution of Seven Agricultural Indicator Plant Species in Response to Climate Change at Agroecosystem in South Korea (농업생태계 기후변화 지표식물 7종의 분포 특성과 기후변화에 따른 영향 예측)

  • Hyung-Kyu, Nam;Song, Young-Ju;Kwon, Soon-Ik;Eo, Jinu;Kim, Myung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • This study was carried out to predict the current and future potential distribution and to identify the factors affecting potential distribution of 7 plants(Lamium amplexicaule L., Trigonotis peduncularis(Trevir.) Benth. ex Hemsl, Capsella bursa-pastoris (L.) L. W. Medicus, Taraxacum officinale Weber, Veronica persica Poir., Conyza sumatrensis E. Walker, Hypochaeris radicata L.) selected as indicators for climate change in agricultural ecosystem. We collected presence/absence data of 7 indicator plants at 108 sites in South Korea and applied the Maxent model. According to future climate scenario, the distribution area of C. bursa-pastoris(L.) L. W. Medicus, T. officinale Weber, and V. persica Poir. was expected to be reduced, but the distribution range was to be maintained. The distribution areas and range of the C. sumatrensis E. Walker and H. radicata L. were expected to be increased. The distribution area and range of T. peduncularis (Trevir.) Benth. Ex Hemsl. and L. amplexicalue L. were rapidly decreased. Non-climatic factors such as land cover and altitude were the most important environmental variable for T. officinale Weber, C. bursa-pastoris(L.) L.W.Medicus, V. persica Poir., T. peduncularis (Trevir.) Benth. Ex Hemsl., and L. amplexicalue L.. Climatic factors were the most important environmental variable for C. sumatrensis E. Walker and H. radicata L.. It is expected that the future potential distribution of 7 indicator plants response to climate change will be used to monitor and to establish the management plan.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

The Prediction and Analysis of Bed Changes Characteristics in the Seomjin River Downstream (섬진강 하류의 하상변동 특성 분석 및 예측)

  • Ceon, Ir-Kweon;Kim, Min-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • It is to use effectively for stream channel and watershed management as the prediction and the analysis of bed changes characteristics in the Seomjin river downstream. The necessary data (section, bed composition material, pivot point water elevation, coefficient of roughness) with regard to analysis of the bed changes characteristics were based upon the survey data and analysis results in the Seomjin river maintenance basic plan. The prediction of bed changes was also completed with HEC-6 model. The study results were summarized as follows: The main factor of bed changes in the Seomjin river downstream can be decided by extreme extraction of bed aggregate rather than the change of hydrological data. According to the analysis of bed stability based on the relation between friction velocity and representative grain size, and the relation between dimensionless tractive force and representative grain size, the Seomjin river downstream appears to be increased overall. The bed composition material in the stream channel of the Seomjin river of 2003 year shows higher composition rate of gravel and lower composition rate of sand as compared to those of 1989 year. According to result that the prediction of bed changes, it is estimated that the bed will be risen approximately 1.5 m to the place up to 9 km from the estuary, have been repetitively risen and fallen up to 1 m to the place between $9{\sim}21\;km$ section, and fallen about 0.5m to the place between $22{\sim}25\;km$ section. As a result, the bed of the Seomjin river downstream can be decided to be risen gradually. However, since the prediction of this study is based on the assumption that there will be no forced aggregate picking, the bed changes can be much greater than expected when there is a massive aggregate picking as it had happened before.

Spatio-temporal Evaluation of Air Temperature-Water Quality Elasticity in Tributary Streams According To Climate Change (기후변화에 따른 지류 하천의 시공간적 기온-수질 탄성도 영향 평가)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.296-306
    • /
    • 2021
  • Elasticity is a statistical technique that interprets the changing pattern of another variable according to a change in one variable as a quantitative numerical value and provides more information than correlation analysis and is widely used in climate change research. In this study the elasticity was calculated and sensitivity analysis was performed using air temperature and water quality data of the major tributaries of the Nakdong River. In addition the confidence interval for the elasticity was calculated using the T-Test and the validity of the elasticity was examined. The strength of elasticity shows high strength in the order of summer>fall>spring>winter and the direction shows regional characteristics with both negative and positive elasticity. After performing hierarchical cluster analysis on monthly observation data they were classified into 5 clusters and the characteristics of each cluster were visually analyzed using a parallel coordinate graph. The direction and intensity of the air temperature elasticity show regional characteristics due to the relatively high population density and complex influencing factors such as sewage treatment plants, small-scale livestock houses and agricultural activities. In the case of TP it shows great regional variability according to the circulation of nutrients in the ecosystem caused by algae growth and death according to temperature changes. Since the air temperature elasticity of the major tributaries of the Nakdong River is over weak and is valid at the significance level of 5%, it was analyzed that there is a change in water quality according to the air temperature change.