• Title/Summary/Keyword: 하천이용시설

Search Result 507, Processing Time 0.027 seconds

Ecological Health Assessments and Water Quality Patterns in Youdeung Stream (유등천에서의 생태학적 건강도 평가 및 수질양상)

  • Lee, Jae-Yon;Jang, Ha-Na;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.341-351
    • /
    • 2005
  • Ecological stream health, based on the index of biological integrity (IBI) , was evaluated at five sampling locations of Youdeung Stream during August-October 2004. For the study, we also analyzed spatial and temporal patterns of conventional water quality over tine period of 1995 ${\sim}$ 2004, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. The water quality parameters used here were conductivity, total suspended solids (TSS), biochemical oxygen demand $(BOD_5)$, chemical oxygen demand $(COD_{mn})$, total nitrogen (TN), and total phosphorus (TP). The multi-metric model values averaged 27.8 in the stream and ranged 24 ${\sim}$ 32. The health condition was judged as 'Fair' to 'Poor' conditions, according to the stream health criteria of US EPA (1993). Longitudinal variation occurred from the upstream to downstream reach; largest differences in all water quality variables occurred between Site 5 and the other sites. This was mainly attributed to the impacts of wastewater treatment plants near the locations. Also, relative proportions of tolerance and omnivore species increased in downstream reaches. The model values, however, did not match the values, based on water quality parameters. We assume that this may be associated with primarily reduced water volumn during dry season in the stream along with modified physical habitat conditions.

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.

Ecological Health Assessment Based on Fish Assemblages Along with Total Mercury Concentrations of Zacco platypus in Miho Stream (어류 군집을 이용한 미호천의 생태 건강성 평가 및 피라미(Zacco platypus)의 총수은 함량)

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.288-297
    • /
    • 2010
  • This study was to evaluate the ecological stream health through the Multimetric Fish Assessment Index (MFAI) along with fish fauna analysis based on the tolerance and trophic guilds at Miho stream in 2008 and 2009. Also, we analysed total mercury concentration in fish tissues to examine heavy metal contamination. Total sampled fish were 40 species and 2,557 individuals and Zacco platypus was the most dominant with 35% relative abundance. It was sampled with 11.4% RA for Korean endemic species (10 species 291 individuals) less than average RA 39.3% for the Geum river watersheds. According to the tolarance guild analysis, tolerant species was more dominant with 58.9% RA (15 species, 1,507 individuals) than sensitive species with 6.6% RA. Trophic guild analysis also suggested that omnivores were more dominant (60.5% RA) than insectivores (31.5% RA). Riffle-benthic species was also sampled with 7.7% RA. Ecological stream health based on the MFAI were averaged 25.3 (n=3) with fair-poor condition in 2008 and also 26.3 (n=3) with fair condition in 2009, just slightly increased than 2008. Qualitative habitat evaluation index was averaged 134 (n=3) with fair condition but most of sites had sediment accumulation that reflected substrate degradations proceeding. From the result of total mercury accumulation in fish tissues, kidney and liver tissues showed the highest but the lowest for gill tissues. Overall mercury concentration were not exceed the national standards by Korean Federation of Drug and Administration (KFDA). Consequently, our result could correspond with the characteristics of Miho stream where point sources such industrial complexes and wastewater treatment plant widely distributed around the stream along the gradient of up and downstream.

Research on Improvement of Lake Water Quality Using Artificial Floating Island (호소 수질 개선을 위한 인공식물섬 장치 개발 연구)

  • Kim, Tae-Hoon;Ahn, Tae-Woong;Jung, Jae-Hoon;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.263-270
    • /
    • 2010
  • This is a research on development of water purification equipment called artificial floating island (=AFI) for the stagnant water area which can secure exuberant landscape and water-friendility. The equipment devised in this study is designed to make up the weakness of conventional AFIs and improves the removal efficiency of pollutants using the mixture of media and plants. The air compressor positioned at the inlet releases air with inflow continuously, the water pump at the outlet sprays as a form of fountain with causing a disturbance on stable water column, then, both of them contribute improvement of water quality over a large area. We applied Bio-stone as a media in this system and performed an experiment of pre-efficiency test, and we concluded that the higher pollutants concentration of inflow, the higher removal efficiency we obtained. At the result of lab-scale experiment, in the case of high-concentration inflow, in the removal efficiency of SS is 62.2%, BOD is 50.2%, COD is 55.1%, T-N is 31.6%, T-P is 38.4%. In addition, to evaluate the field application, we set up the facilities in Sin-gal lake located in Yongin-Si Gyeonggi-Do, and researched on the removal efficiency of outflow relative to the inflow. As a result, SS is 53.5%, BOD is 32.8%, COD is 36.9%, T-N is 22.6%, T-N is 33.2%.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

A Study on the Possibility of Utilizing Both Biotope Maps and Land Cover Maps on the Calculation of the Ecological Network Indicator of City Biodiversity Index (도시생물다양성 지수(CBI) 중 생태네트워크 산정을 위한 도시생태현황지도 및 토지피복지도 활용 가능성 연구)

  • Park, Seok-Cheol;Han, Bong-Ho;Park, Min-Jin;Yun, Hyerngdu;Kim, Myungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.73-83
    • /
    • 2016
  • This study modified and applied the ecological network(Indicator 2) from the City Biodiversity Index(CBI) to be tailored to Korea. It is calculated by utilizing a biotope map and a land cover map. The ecological network of Gyeryong-Si was 13,713,703(33.8%) with the biotope map and 17,686,966(37.9%) with the land cover map. The result of the biotope map was lower than the land cover map. The ecological network of Goyang-Si was 4,961,922(4.9%) with the biotope map and 4,383,207(3.7%) with the land cover map. The result of the land cover map was lower than the biotope map. As a main result of the research, an error was discovered in which, when calculating the ecological network, the types of the military unit facilities were distinguished into a special area on the biotope map and into an urbanization promotion area and a forest area on the land cover map. In the case of a middle-classified, land cover map, the land use in the surroundings of the forest area was not subdivided. An error in the development area expressed as a forest green was discovered. When selecting the natural elements, too, regarding the types of artificially-created rivers, artificial ponds, and artificial grasslands, etc. on a biotope map, the exclusions were necessary. Regarding the natural, bare ground on a land cover map, there was a need to calculate by including the natural elements. It was judged that, in the future, the ecological network in the unit of the entire nation can be analyzed roughly by utilizing a land cover map. It was judged that, in a city having a biotope map, the calculation of the ecological network utilizing a map of the present situation of the urban ecology will be a more accurate diagnosis of the present situation.

Characteristics of Manure and Estimation of Nutrient and Pollutant of Holstein Dairy Cattle (홀스타인 젖소 분뇨의 특성과 비료성분 및 오염물질 부하량 추정)

  • Choi, D.Y.;Choi, H.L.;Kwag, J.H.;Kim, J.H.;Choi, H.C.;Kwon, D.J.;Kang, H.S.;Yang, C.B.;Ahn, H.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • This study was conducted to determine fertilizer nutrient and pollutant production of Holstein dairy cattle by estimating manure characteristics. The moisture content of feces was 83.9% and 95.1% for urine. The pH of feces and urine were in the ranges of 7.0~7.4 and 7.5~7.8, respectively. The average BOD5, COD, SS, T-N, T-P concentrations of the dairy feces were 18,294, 52,765, 102,889, 2,575, and 457mg/ℓ, respectively. Dairy urine showed lower levels of BOD5(5,455mg/ℓ), COD(8,089mg/ℓ), SS(593mg/ℓ), T-N(3,401mg/l), and T-P(13mg/ℓ) than feces. The total daily produced pollutant amounts of a dairy cow were 924.1g(Milking cow), 538.8g(Dry cow), 284.4g(Heifer) of BOD5, 2,336.5g (Milking cow), 1,651.8g(Dry cow), 734.1g(Heifer) of COD and 4,210.1g(Milking cow), 2,417.1g(Dry cow), 1,629.1g(Heifer) of SS and 194.8g(Milking cow), 96.4g(Dry cow), 58.3g(Heifer) of T-N and 24.0g(Milking cow), 10.2g(Dry cow), 6.1g(Heifer) of T-P. The calculated amount of pollutants produced by a 450kg dairy cow for one year were 181.3kg of BOD5, 492.5kg of COD, 899.9kg of SS, 36.0kg of T-N and 4.1kg of T-P. The total yearly estimated pollutant production from all head(497,261) of dairy cattle in Korea is 90,149 tons of BOD5, 244,890 tons of COD, 447,491 tons of SS, 17,898 tons of T-N and 2,008 tons of T-P. The fertilizer nutrient concentrations of dairy feces was 0.26% N, 0.1% P2O5 and 0.14% K2O. Urine was found to contain 0.34% N, 0.003% of P2O5 and 0.31% K2O. The total daily fertilizer nutrients produced by dairy cattle were 197.4g (Milking cow), 97.4g(Dry cow), and 57.9g(Heifer) of Nitrogen, 54.2g(Milking cow), 22.2g(Dry cow), and 14.2g(Heifer) of P2O5 and 110.8g(Milking cow), 80.4g (Dry cow), and 39.5g(Heifer) of K2O. The total yearly estimated fertilizer nutrient produced by a 450kg dairy animal is 36.2kg of N, 8.8kg of P2O5, 24.6kg of K2O. The estimated yearly fertilizer nutrient production from all dairy cattle in Korea is 18,000 tons of N, 4,397 tons of P2O5, 12,206 tons of K2O. Dairy manure contains useful trace minerals for crops, such as CaO and MgO, which are contained in similar levels to commercial compost being sold in the domestic market. Concentrations of harmful trace minerals, such as As, Cd, Hg, Pb, Cr, Cu, Ni, Zn, met the Korea compost standard regulations, with some of these minerals being in undetected amounts.