• Title/Summary/Keyword: 하천유지유량평가

검색결과 137건 처리시간 0.031초

The Effects of Pollutants into Sub-basin on the Water Quality and Loading of Receiving Streams (하천 수질 및 부하량에 미치는 유역 내 오염원의 영향)

  • Han, Mideok;Son, Jeeyoung;Ryu, Jichul;Ahn, Kihong;Kim, Yongseok
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제36권9호
    • /
    • pp.648-658
    • /
    • 2014
  • We examined the effects of pollutants into sub-basin on the water quality and loading based on data surveyed during January-December 2013 from 13 sites of 5 streams in the Jinwi watershed. We used the contour plot and Kruskal-Wallis rank sum test to analyze seasonal variation of water quality and loading and Pearson correlation analysis to assess the relationships between pollutants and loadings. The significantly higher seasonal variation were SS, TN and TOC as compared to other water quality constituents (P < 0.001). A significant interaction existed between the effects of human population and the effects of discharge of Sewage Treatment Plant (STP) on water quality and loading, especially for the spring and winter seasons. It is necessary to control discharge water of sewage and wastewater from industrial facilities and to make full use of the watershed management system such as TMDLs in operation since 2012 for improvement in stream water quality.

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • 제27권3호
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Algal Bioassay for the Treated and Raw Wastewater in the Kyongan Stream (경안천에서 하수처리수와 생하수에 대한 algal bioassay)

  • Lee, Ok-Hee;Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • 제34권3호통권95호
    • /
    • pp.192-198
    • /
    • 2001
  • The Kyongan Stream and the inlet part of Paltang Reservoir are under significant influence of the effluent of sewage wastewater treatment plant (SWTP) and untreated domestic wastewater (DOW). The fertility of wastewater was evaluated through bioassay using natural phytoplankton population diluted in five levels. The concentrations of $NH_4$, SRP and SRSi were positively correlated with the biomass of phytoplankton. P concentration showed stronger correlation (r = 0.959, p<0.001)than other nutrients. Compared with the initial concentrations, $NH_4$ concentrations in samples from SWTP and DOW decreased 96% and 7%, respectively during the cultivation, and those of SRSi decreased 97% and 60%. However, $NO_3$ concentrations in samples neither showed any particular change nor any increase. Chl-a concentration ranged between $20\;{\mu}g/l$ and $125\;{\mu}g/l$, which maximum value increased up to 83 times. Estimated from the relationship between chl-a and SRP, the P concentration that can maintain the biomass of algae under mesotrophic state (<25\;{mu}g$\;chl-a/l$) was $83\;{mu}g\; P/l$. The volume of flow to maintain this level solely by natural dilution was about $16{\sim}25$ times of in flowing volume in the stream. However, it is not feasible to tap water of such quantity. Therefore, it is imperative to build an advanced sewage wastewater treatment facility that can reduce $NH_4$ and SRP concentrations that promote the growth of phytoplankton in discharged water.

  • PDF

An Analysis on the Changes of flow Duration Characteristics due to Dam Construction (댐 건설에 따른 하류 유황의 변화 분석)

  • Kim, Tae-Gyun;Yoon, Yong-Nam;Ahn, Hae-Hyun
    • Journal of Korea Water Resources Association
    • /
    • 제35권6호
    • /
    • pp.807-816
    • /
    • 2002
  • The purpose of the present study was to evaluate the changes of flow duration characteristics of a large river basin due to construction of a dam. The changes of water surface are quantified from remote sensing film taken before and after dam construction. Gongiu gauging station was selected to analyze the changes of flow duration, and annual exceedance series of Gongju and Kyuam gauging station were selected to estimate the changes of flood quantile before and after dam construction. From the analysing results, it was found that the construction of dam contributes to make new duration stable and to decrease flood flow. In conclusion, it was confirmed that the construction of the dam is useful for water supply and flood prevention.

Sustainable Water Resources Planning to Prevent Streamflow Depletion in an Urban Watershed: 1. Methodology (도시유역의 건천화 방지를 위한 지속가능한 수자원 계획: 1. 방법론)

  • Lee, Kil-Seong;Cung, Eun-Sung;Kim, Young-Oh;Cho, Tak-Gun
    • Journal of Korea Water Resources Association
    • /
    • 제39권11호
    • /
    • pp.935-946
    • /
    • 2006
  • This study proposed a new procedure of sustainable water resources planning to prevent the urban streamflow depletion, based on the Heathcote's study in 1998: (1) to understand the watershed component and processes, (2) to identify and quantify problems within the watershed, (3) to set clear and specific goals, (4) to develop a list of management options, (5) to eliminate infeasible options, (6) to test the effectiveness of remaining feasible options, and (7) to develop the final options. PSR(Presure-State-Response) concept was used for the determination of indicators of PSD(Potential Streamflow Depletion; step 2) and effect equation (step 7) and composite programming for the calculation of PSD. The instreamflow requirement was proposed as clear and specific goal (step 3) and was determined by the larger of the PHABSIM's environmental flow and the drought flow. A continuous rainfall-runoff model is necessary to test the effectiveness of alternatives. It should estimate not only the exact runoff but also the effect of landuse change, reservoir, infiltration facility and so on like SWAT(Soil and Water Assessment Tool). The proposed procedure will be applied on the corresponding paper.

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • 제37권3호
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

Drought Risk Analysis Considering Bivariate Drought Regional Frequency Analysis (이변량 가뭄지역빈도해석에 따른 가뭄위험분석)

  • Yoo, Ji-Young;Park, Jong-Yong;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.52-52
    • /
    • 2011
  • 최근 지구온난화가 가속화되면서 전 세계적으로 기상재해가 급증하고 있다. 특히 강우패턴의 변화를 고려한 강수 전망 연구결과는 온실가스 농도 증가로 호우나 가뭄, 대설 등이 지역에 따라 서로 상반되는 변화를 가져올 가능성이 있으며, 우리나라의 경우도 극한강수의 발생빈도가 1990년대 후반 이래로 뚜렷하게 증가하는 경향을 보이고 있다. 현재 우리나라에서도 이러한 기후변화에 대비하기 위해 여러 가지 가뭄연구를 수행하고 있는 실정이다. 일반적으로 가뭄의 해석에는 그 목적에 따라 여러 가지 지표를 이용하여 가뭄을 정의하며, 그 중 강수 및 하천유량 등은 기상 및 수문학적 가뭄을 판단하기 위한 지표로 널리 사용되고 있다. 특히 강수의 부족은 가뭄의 주된 요인이라 할 수 있으며, 가뭄의 정량적 평가에 효과적으로 이용될 수 있다. 즉 평균수준(혹은 절단수준)을 설정하고 가뭄의 지속기간, 심도, 발생빈도 등을 정의한 후, 이를 시계열 분석하여 가뭄의 특성을 분석하는 것이다. 또한 가뭄은 지속기간과 심도를 주요 특성변수를 가지는 이변량 수문사상이므로, 이를 반영한 확률 및 통계학적 해석방법의 적용이 반드시 필요하다. 그러므로 본 연구에서는 우리나라의 가뭄특성을 가뭄지속기간과 심도의 이변량을 동시에 고려하여 지점별 가뭄빈도해석을 수행하였으며, 지역별 가뭄발생특성을 고려하여, 강우관측지점별 과거에 발생한 최대가 뭄사상에 대한 가뭄위험도를 계산하였다. 그 결과, 우리나라 지점별 미래에 연속되는 10, 50, 100, 150년에 따라 과거의 최대가뭄이 발생할 확률을 지도로 도시하여 지역적 가뭄위험도를 분석하여 가뭄위험지역을 예상하였다. 이는 우리나라 내 가뭄취약지역의 우선순위를 결정하고, 실제로 국가적인 차원에서의 장기적인 가뭄관리를 하는 데 있어, 가뭄취약지역별 차별성 있는 가뭄대응방안을 마련하는 데 있어서도 하나의 객관적 근거로 활용될 수 있을 것으로 판단된다.

  • PDF

Change of Residual Deltamethrin Sprayed in the Stream Water according to Wind Speed and Diffusion (풍속 및 수중확산에 따른 방역용 Deltamethrin의 수중 잔류변화)

  • Cho, Kyung-Won;Pak, Jae-Hun;Lim, Jong-Sung;Yoon, Ji-Yeong;Moon, Hye-Ree;Lee, Yong-Ju;Lee, Sung-Kyu;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • 제17권2호
    • /
    • pp.126-132
    • /
    • 2013
  • The objectives of this study were to provide the basic data of the residue of deltamethrin in the stream water. Deltamethrin was treated on side of Ban-Suk stream and Juk-Dong ditch for hygienic purpose by air spray. The drift concentration of deltamethrin was investigated with different wind speed condition on Ban-Suk stream (A), and the change of residue with time course on Juck-dong ford (B). Also we found the residual change of deltamethrin until 48 hour in Yu-Seong stream confluence (C) where two streams join. Maximum residues of A were $0.17{\mu}g/L$ (5 min, 200 m) at strong wind speed and $4.42{\mu}g/L$ (0 min, 25 m) at moderate wind speed according to different wind velocity. Residues of B were $0.15{\sim}0.26{\mu}g/L$ (0~480 min) after spraying, and decreased to a non-detected level after 720 min. Residues of C were $0.15{\mu}g/L$ (0 min), $0.11{\mu}g/L$ (1 min) and $0.10{\mu}g/L$ (12 hr) after spraying, and no residues were detected in any other samples. From these results, it is concluded that deltamethrin residues in water should be rapidly diluted into stream water and affected negligible toxic effect to stream ecosystem.

Hydrological Feasibility for Heightening Dae-ah Reservoir (대아지 숭상을 위한 수문학적 가능성 평가)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • 제35권2호
    • /
    • pp.225-235
    • /
    • 2008
  • The objective of this study is to evaluate the hydrological feasibility of heightening the Dae-ah reservoir in order to save instream flow at the Bong-dong station situated in the Mankyoung river. The results are summarized as follows. Firstly, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1207.4 mm, the rate of water supply divided by rainfall of 95.8%, the rate of water supply divided by inflow of 153.1%, the rate of water supply divided by storage capacity of 236.1%, and the rate of inflow divided by storage capacity of 200.6%. Secondly, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 (the 95th high flow) of $28.95m^3/s$, the Q185 (the 185th high flow) of $2.00m^3/s$, the Q275 (the 275th high flow) of $2.00m^3/s$, and the Q355 (the 355th high flow) of $0.82m^3/s$. Thirdly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1220.7 mm, the rate of water supply divided by rainfall of 96.8%, the rate of water supply divided by inflow of 154.6%, the rate of water supply divided by storage capacity of 160.0%, and the rate of inflow divided by storage capacity of 137.0%. Fourthly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 of $28.09m^3/s$, the Q185 of $1.79m^3/s$, the Q275 of $1.79m^3/s$, and the Q355 of $0.82m^3/s$. The conclusion appeared not to have the hydrological feasibility of heightening the Dae-ah reservoir from the reason that increased storage capacity does not increase water supply amount any more because of the high rate of the water supply divided by inflow.

  • PDF

Impact of BMP Allocation on Discharge and Avoided Costs in an Urbanized Watershed (최적관리기법 위치분배에 의한 유역단위 하천유량과 회피비용 변화에 관한 연구)

  • Kang, Sang-Jun
    • Journal of Environmental Policy
    • /
    • 제9권1호
    • /
    • pp.83-107
    • /
    • 2010
  • Urbanized environments are constructed to estimate peak flow and cost savings in response to possible BMP allocation at a watershed scale. The main goal is to explore the proper allocation of sub-watershed level BMPs for peak flow attenuation at a watershed scale. Since several individual site scale BMPs work as a form of aggregated BMPs at a sub-watershed scale, it is a question as to how to properly allocate the sub-watershed level BMPs at a watershed scale. The Hydrological Simulation Program-FORTRAN (HSPF) is set up for a hypothetically urbanized watershed. A peak flow is determined to be the primary variable of interest and targeted to characterize the spatial distribution of aggregated BMPs. Construction cost of a regional pond forms the basis of the economic valuation. The results indicate that when total size of BMPs is constant in the entire watershed, (1) it is most effective to have aggregated BMPs in some upper sub-watersheds while the BMPs in either the mainstem sub-watershed or a single sub-watershed are the least effective choices for peak flow attenuation at a watershed scale; (2) savings exist between allocation differences and reduced peak flow increases cost savings. The largest saving is found in the strategy of aggregated BMPs in some upper sub-watersheds. These findings, however, call for follow-up site specific case studies revisiting the watershed scale impacts of BMP allocation. Then, it will be argued that location and extent of decentralization are considerable policy variables for an alternative stormwater management policy at a watershed scale.

  • PDF