• Title/Summary/Keyword: 하천구역

Search Result 412, Processing Time 0.019 seconds

A Study on the Influence of the Water System on the Location and Spatial Structure of Hongju-seong (수체계가 홍주성의 입지와 공간구조 변천과정에 미친 영향)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the water system on the location, spatial structure, and construction method of Hongju-eupseong, centering on Hongjumok-eupchi. During the Joseon Dynasty, the water system in Hongjumok-eupchi is composed of artificially constructed Seong-an Runnel and ponds based on a branch-shaped natural waterways flowing from south to north and west to east. Compiling the results of various literature records, excavations and analysis of map data, it can be seen that the water system has an important influence on the construction of Hongju-seong. Firstly, Hongju-seong from the Goryeo Dynasty to the late Joseon Dynasty is located using a circular shape of topographical structure and a small erosion basin formed on the inner side of the Hongseongcheon and Wolgyecheon streams without significant change in location. In particular, Wolgyecheon and Hongseongcheon are natural moats, which are harmonized with Sohyangcheon and riverside topographical structures, affecting the location and construction method of Hongju-seong, water related facilities, and the spatial structure of eupseong. It is understood that location characteristic of Hongju-seong reflects the urban location structure harmonized with waterways in ancient China and Korea. Secondly in harmony with the water system and topographic structure of Hongju-seong, it is an important factor in deciding the land use of the town, the arrangement of the town hall facilities and inducing various non-subsidiary measures such as the establishment of embankment forest with a secret function and the closure of the south gate. In addition, artificial drainage facilities such as Seongan runnel and ponds are being actively introduced from early on to protect the walls or towns from flooding of Wolgyecheon. Especially there were typical methods for protecting the walls from water damage such as the Joseon Dynasty stone castle structure that was integrated with saturn(soil wall) in the Goryeo Dynasty, retreating wall in the northern gate area in the late Joseon Dynasty, and the method of constructing wall using korean tile and stone floors between reinforced soil layers in the western and northern wall.

Characteristics of Manure and Estimation of Nutrient and Pollutant of Holstein Dairy Cattle (홀스타인 젖소 분뇨의 특성과 비료성분 및 오염물질 부하량 추정)

  • Choi, D.Y.;Choi, H.L.;Kwag, J.H.;Kim, J.H.;Choi, H.C.;Kwon, D.J.;Kang, H.S.;Yang, C.B.;Ahn, H.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • This study was conducted to determine fertilizer nutrient and pollutant production of Holstein dairy cattle by estimating manure characteristics. The moisture content of feces was 83.9% and 95.1% for urine. The pH of feces and urine were in the ranges of 7.0~7.4 and 7.5~7.8, respectively. The average BOD5, COD, SS, T-N, T-P concentrations of the dairy feces were 18,294, 52,765, 102,889, 2,575, and 457mg/ℓ, respectively. Dairy urine showed lower levels of BOD5(5,455mg/ℓ), COD(8,089mg/ℓ), SS(593mg/ℓ), T-N(3,401mg/l), and T-P(13mg/ℓ) than feces. The total daily produced pollutant amounts of a dairy cow were 924.1g(Milking cow), 538.8g(Dry cow), 284.4g(Heifer) of BOD5, 2,336.5g (Milking cow), 1,651.8g(Dry cow), 734.1g(Heifer) of COD and 4,210.1g(Milking cow), 2,417.1g(Dry cow), 1,629.1g(Heifer) of SS and 194.8g(Milking cow), 96.4g(Dry cow), 58.3g(Heifer) of T-N and 24.0g(Milking cow), 10.2g(Dry cow), 6.1g(Heifer) of T-P. The calculated amount of pollutants produced by a 450kg dairy cow for one year were 181.3kg of BOD5, 492.5kg of COD, 899.9kg of SS, 36.0kg of T-N and 4.1kg of T-P. The total yearly estimated pollutant production from all head(497,261) of dairy cattle in Korea is 90,149 tons of BOD5, 244,890 tons of COD, 447,491 tons of SS, 17,898 tons of T-N and 2,008 tons of T-P. The fertilizer nutrient concentrations of dairy feces was 0.26% N, 0.1% P2O5 and 0.14% K2O. Urine was found to contain 0.34% N, 0.003% of P2O5 and 0.31% K2O. The total daily fertilizer nutrients produced by dairy cattle were 197.4g (Milking cow), 97.4g(Dry cow), and 57.9g(Heifer) of Nitrogen, 54.2g(Milking cow), 22.2g(Dry cow), and 14.2g(Heifer) of P2O5 and 110.8g(Milking cow), 80.4g (Dry cow), and 39.5g(Heifer) of K2O. The total yearly estimated fertilizer nutrient produced by a 450kg dairy animal is 36.2kg of N, 8.8kg of P2O5, 24.6kg of K2O. The estimated yearly fertilizer nutrient production from all dairy cattle in Korea is 18,000 tons of N, 4,397 tons of P2O5, 12,206 tons of K2O. Dairy manure contains useful trace minerals for crops, such as CaO and MgO, which are contained in similar levels to commercial compost being sold in the domestic market. Concentrations of harmful trace minerals, such as As, Cd, Hg, Pb, Cr, Cu, Ni, Zn, met the Korea compost standard regulations, with some of these minerals being in undetected amounts.