• Title/Summary/Keyword: 하중-비하중 시험

Search Result 18, Processing Time 0.026 seconds

Mechanical Properties of Minerals in Daejeon Granite According to Depths by Dynamic Ultra-micro Hardness (동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성)

  • Choi, Junghae;Shin, Juho;Jang, Hyongdoo;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.172-184
    • /
    • 2017
  • The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test < load-unload test < indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

A Study on Field Testing Methods of Compressive Strength for Shotcrete Quality Control (숏크리트 품질관리를 위한 현장 압축강도시험법에 관한 연구)

  • Chang Seok-Bue;Hong Eui-Joon;Moon Sang-Jo
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.175-186
    • /
    • 2005
  • 터널공사에서 숏크리트는 가장 중요한 지보재 이므로 시공중 품질관리를 위한 압축강도시험은 매우 중요하다. 현장 타설 숏크리트의 압축강도는 실험실조건에 비하여 낮은 값을 갖고 있어 현장강도 시험은 필수적이나, 적절한 시험방법의 부재로 인하여 코어채취에 의한 압축강도시험이 적용되고 있다. 이 방법은 적절한 샘플채취와 초기강도 측정에 큰 문제점을 가지고 있다. 따라서, 본 논문에서는 공기압식 핀관입시험법을 고찰하였으며, 압축강도시험의 단점을 해소할 수 있는 점하중강도시험법의 적용성을 검토하였다. 또한, 향후 연구계획으로써, 현장강도시험기법으로 선정된 공기압식 핀관입시험기의 적정성 평가와 숏크리트 압축강도시험을 대체할 수 있는 점하중강도시험의 적용성 분석계획을 제시하였다.

  • PDF

Experimental Investigation of Lateral Retrofitting Effect with CFRP and BRB (Buckling-Restrained Brace) for Beam-column Joints of Low-Rise Piloti Buildings (탄소섬유시트와 비좌굴 가새를 이용한 저층 필로티 구조물의 보-기둥 연결부의 횡방향 보강효과에 관한 실험적 연구)

  • Seo, Sang-Hoon;Yoo, Yeon-Jong;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Ki-Hak;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • The purpose of this study is to evaluate the structural capacities of beam-column specimens retrofitted with CFRP sheet and BRB (Buckling-Restrained Brace) under sustained axial and cyclic lateral loads. Three specimens were made using different retrofitting methods : non-retrofitted, retrofitted with CFRP sheets only, and retrofitted with both CFRP sheet and BRB systems. Lateral load resistant capacities were evaluated based on the load-displacement relations. From the results, the maximum lateral forces of the FRP sheet retrofitted and both the FRP and BRB retrofitted specimens showed approximately 34% and 138% improvement, respectively, compared with the non-retrofitted specimen.

An Experimental Study on Load Bearing Capacity of Lattice Girder as a Steel Support in Tunnelling (터널 지보재로서 격자지보의 하중지지력에 관한 실험적 연구)

  • 유충식;배규진
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1997
  • It has long been recognized that the H-beam steel rib has many shortcomings when used as a steel support in tunneling. One of the major shortcomings is the shotcrete shadow created behind H-beam flange which eventually reduces the load bearing capacity of shotcrete shell. In many European countries, plate girder as the H-beam steel rib has been replaced by lattice girder which has many advantages over the H-beam steel rib. Successful application of the lattice girder as a steel support requires a thorough investigation on the load bearing capacity of the lattice girder. Therefore, laboratory bending and compression tests were conducted on lattice girders with the aim of investigating the load bearing capacity of the lattice girders. The results of tests show that the load bearing capacity of laIn twice girders is higher than that of H-beams, which indicates that the lattice girder can be effectively used as a support in tunneling.

  • PDF

Behaviour of Foundation Ground with Marine Clay in Anisotropy (이방성을 갖는 해성점토 기초지반의 거동해석)

  • Kim, Myeon-Su;Lee, Kang-Il;Kim, Chan-Ki;Yun, Jung-Mann;Baek, Won-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • This study aims at investigating of the behavioral characteristics of foundation ground subjected to a strip load in anisotropy. Using marine clays sampled at Shihwa area, a series of laboratory tests including triaxial compressive test, plane strain compressive and expansion tests that allows horizontal deformation only and zero strain (${\varepsilon}_2$) in the direction of intermediate stress (${\sigma}_2$) are conducted. In addition, a numerical analysis using parameters obtained from the tests is carried out. In the numerical analysis, Cam-clay model that simulates the behavior of natural deposited clay properly is adopted. The analysis results show that the vertical displacements of the plane strain compressive tests are relatively larger than those of triaxial compressive tests by 18-25%. Likewise, the horizontal displacements is 13-19% larger.

An Experimental Assessment on the Structural Behavior of Bolt Connected Deep Corrugated Steel Plate (볼트이음된 대골형 파형강판의 구조거동에 대한 실험적 평가)

  • Oh, Hong Seob;Lee, Ju Won;Jun, Beong Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 2011
  • Deep corrugated steel plate structure has more compressive force and flexibility in bending behavior than short span structure. Asymmetric earth pressure distribution has occurred during construction. Ultimate strength and moment in domestic area, having superior ability at bending strain has been examined in this study. Based on the result of the study preceded, performance of Deep corrugated steel plate specimen has been evaluated by comparing increase of strength according to the increase of reinforcement content in bolt connections and failure mode of specimen.

A Study on Field Application of a Deformable Rod Sensor to Large Diameter Drilled Shafts (대구경 현장타설말뚝에 대한 변형봉 센서의 현장적용성에 관한 연구)

  • 정성기;김상일;정성교;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.15-22
    • /
    • 2003
  • In the conventional load transfer analysis for a steel pipe drilled shaft, it was assumed that the concrete's strain is the same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by the formular as prescribed by specification is used in the calculation of pile axial load. But, the pile axial load calculation by conventional method differed to some extent from the actual pile load. So, the behavior of a steel pipe drilled shaft could not be analyzed exactly. Thus, the necessity to measure the strain for each pile component was proposed. In this study, a new approach for load transfer measurement of large diameter drilled shafts was suggested ; the strain of each pile component(i. e., steel and concrete) was measured by DRS(Deformable Rod Sensor), the elastic modulus was determined by the uniaxial compression test for concrete specimens made at test site and a value of elastic modulus was evaluated as average tangential modulus corresponding to the stress level of the (0.2-0.6)$f_{ck}$. Field application was confirmed by the results of load transfer measurement tests for 3 drilled shafts. The errors for calculated pile head load were -11 ∼16% and 3.4% separately.

Rapid Consolidation Test Using Inflection Point Method (변곡점법에 의한 신속 압밀시험)

  • 민덕기;황광모;최규환
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.85-93
    • /
    • 2002
  • This study presented a new method for evaluating the coefficient of consolidation by using inflection point method which was based on the fact that time factor, T corresponding to the inflection point of a semi-logarithmic plot of a time curve is fixed and equals to T = 0.405 at 70.03% consolidation. In the proposed method, as the next load increment is applied as soon as the inflection point is confirmed, the time required to identify the inflection point can be shortened. Thus, the coefficient of consolidation may be easily evaluated. The time required to complete the testing using this rapid consolidation method could be as low as 0.5~9 hours compared with 1 or 2 weeks in the case of the conventional consolidation test. For this study, we designed settlement equipment for normalization of test samples. In test results, the factors of consolidation agreed with undisturbed samples results.

Dynamic Resistance of Anchor using Blasting Test and Numerical analysis for Earthquake (발파실험과 내진해석을 통한 Anchor의 동적 저항성에 관한 연구)

  • Choi, Kyung-Jip;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.500-511
    • /
    • 2017
  • Recently, as earthquakes have occurred in Gyeongju, interest in the stability of structures against vibration from earthquakes has increased. In Korea, the capacity of load resistance is mainly considered in the design of anchors. However, the vibration resistance characteristics of anchors have not been fully elucidated. The traditional type of anchor, which is a frictional resistance anchor, is often reported to fail due to vibration in construction procedures, such as blasting. The expansion type of anchor, on the other hand, could have more resistance to vibration but its capability of demonstrating vibratory resistance has to be investigated. In order to verify the vibratory resistance characteristics of expansion anchors against blasting and earthquake vibration, field tests and numerical analyses for seismic wave were performed. Field blasting test results show that the expansion anchor has better capability against vibratory load than does the frictional type anchor. Numerical analysis to earthquake also show that the expansion type anchor provides more resistance than does the frictional type anchor.

Asphalt Concrete Pavement Response to Moving Load and Viscoelastic Property (아스팔트 혼합물의 점탄성과 차량의 이동 속도가 포장 거동에 미치는 영향)

  • Jo, Myoung-hwan;Kim, Nakseok;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.485-492
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25 km/hr, 50 km/hr, and 80 km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package, ABAQUS was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. For viscoelastic analysis, relaxation moduli of asphalt mixtures were obtained from laboratory test. Field responses reveals the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.