• Title/Summary/Keyword: 하중 제어

Search Result 688, Processing Time 0.038 seconds

A Study for Controllability, Stability by Optimal Control of Load and Angular Velocity of Flying Objects using the Spiral Predictive Model(SPM) (나선 예측 모델에서의 비행체 하중수 및 각속도 최적 제어에 의한 제어성과 안정성 성능에 관한 연구)

  • Wang, Hyun-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.268-272
    • /
    • 2007
  • These days many scientists make studies of feedback control system for stability on non-linear state and for the maneuver of flying objects. These feedback control systems have to satisfy trajectory condition and angular conditions, that is to say, controllability and stability simultaneously to achieve mission. In this paper, a design methods using model based control system which consists of spiral predictive model, Q-function included into generalized-work function is shown. It is made a clear that the proposed algorithm using SPM maneuvers for controllability and stability at the same time is successful in attaining our purpose. The feature of the proposed algorithm is illustrated by simulation results. As a conclusion, the proposed algorithm is useful for the control of moving objects.

Dynamic Response Control of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개 동적 응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.522-527
    • /
    • 2013
  • In this study, dynamic response control of a flexible wing such as gust loads alleviation using sliding mode control method is presented. To achieve this purpose, trailing edge control surface of a flexible wing is used as control means generating the aerodynamic control force. Aeroservoelastic CASE) model consisting of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. A sliding mode controller based on the estimated state vector is designed for active dynamic response control of flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under atmospheric turbulence loading.

  • PDF

The Robust Control of Two Mass Spring System (2관성 공진 시스템의 강건제어)

  • 조도현;이종용;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.76-86
    • /
    • 1998
  • The Two-Mass Spring(TMS or Two-Inertia Resonance) system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. In this paper, we compared and considered with the state feedback effects for the TMS system. By connecting each controller design to the state feedback control, we could predict each controller performances and decide weighting functions and parameters of LQ and $H_\infty$ controller.

  • PDF

The Development of Tele-operated Heavy Duty Robot System (고하중용 원격작업 로봇시스템 개발)

  • Seo, Yong-Chil;Kim, Chang-Hoi;Cho, Jai-Wan;Choi, Young-Soo;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.166-168
    • /
    • 2004
  • 근래에 무인 자동화기술의 발달과 마이크로프로세서 기술의 혁신적인 성장에 힘입어 일반산업현장에서 사용되고 있는 로봇은 복잡하고 다양한 작업이 요구되는 비제조업분야로 그 적용분야가 확장되고 있다. 그 대표적인 분야를 들자면 방사능 지역과 같은 위험한 환경에서의 작업, 우주공간이나 심해에서의 작업, 활선 작업과 같이 사람이 접근하기 어려운 곳에서 인간을 대신하는 작업 등이 있다. 이와 같이 사람이 접근하기 어려운 지역에서 인간을 대신하여 작업을 수행할 수 있는 원격작업 로봇시스템을 개발하였다. 개발된 로봇은 6 자유도를 갖는 수평다관절 유압구동형 조작기로써 로봇의 운반 및 설치가 용이하도록 제 1 링크의 분리가 가능하도록 설계하였다. 로봇의 제어기는 전체 제어기를 통괄하는 1 개의 마스터 CPU 및 3 개의 제어보드로 구성되며 이들은 VME 버스를 이용하여 데이터를 전송한다. 로봇의 관리제어시스템은 그래픽워크스테이션을 이용하여 구성하였으며 로봇의 작업상황을 실시간으로 애니메이션하여 작업자에게 원격현장감을 제공하고 작업효율의 향상시켰다.

  • PDF

Development of Multi-Axes Chain Hoist Servo Systems for Lifting Heavy Loads (고하중 이송 멀티 체인 호이스트 서버 시스템 개발)

  • Park, Jaehwan;Kwon, Ohung
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.46-52
    • /
    • 2015
  • Most stage directors and designers make use of controling and moving lots of stage set or device as a large automation device or machine to achieve dramatic effect in their performances. Specially, it is very important to use a programmable multi-chain hoist system which is able to move high speed as well as to lift heavy loads. This paper proposes a multi chain hoist servo system to lift or lower a heavy load of about l ton for public performances' stage. It is automatically operated, electrically driven by a control console with a PTP trajectory generation algorithm, a realtime network control algorithm, and 4 step sequential safety algorithm. The efficiency and performance of the developed system are verified through a series of experiments.

Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis (동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안)

  • Lee, Han-Joo;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.103-110
    • /
    • 2006
  • This study presents a technique to control quantitatively lateral drift of RC tall frameworks subject to lateral loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. Three types of 10 and 50 story RC framework models are considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF

Nonlinear Analysis of Reinfored Concrete Beams by Displacement Control Method (변위제어법에 의한 철근콘크리트 보의 비선형해석법)

  • 김진근;이을범;이태규
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • In this paper a computer program for displacement control method was developed, in which a certain displacement of the structure is increased and the applied loads and another displacements are obtained. To simplify the nonlinear structural analysis, the relationships of moment-curvature were linearized as elasto-softening model for over-reinforced concrete beam and as elasto-plastic-softening model for under-reinforced concrete beam. Since the result of the analysis of reinforced concrete beam depended on the element size beyond elastic zone, the relationship of moment-curvature was modified for each element by using the concept of fracture energy approach. Overall, analytical results accurately predicted the load-displacement behavior of reinforced concrete beams.

  • PDF

Study on Prediction and Control of Wind-Induced Heel Motion of Cruise Ship (바람 하중에 의한 크루즈선의 횡경사 예측 및 제어에 관한 연구)

  • Kim, Jae-Han;Kim, Yonghwan;Kim, Yong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.206-216
    • /
    • 2013
  • The present study considers the prediction of wind-induced heel of cruise ship and its stabilization. Wind load in ocean exerts on the surface of superstructure of cruise ship, which causes the heel moment on the ship. The calculation of wind load starts from choosing wind speed profile, so that the logarithmic wind profile model is applied in this study. Heel moment by wind load is calculated by adopting approximate formulation and applied to the ship motion analysis in time domain. Motion stabilizers, such as stabilizing fin and U-tube tank, are considered to reduce the heel effect as well as excessive roll motion. From this study, it is expected that the present method can be applied to the prediction and stabilization of the heel motion of cruise ships.

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.