• Title/Summary/Keyword: 하중 절감

Search Result 142, Processing Time 0.019 seconds

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Performance Evaluation of the Stair Joints Constructed with Partial Precast Concrete System (프리캐스트 콘크리트 계단 접합부의 접합방식에 따른 성능평가)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.833-840
    • /
    • 2008
  • The time and cost can be reduced when applying partial precast concrete to the stair system in comparison to the cast-in-place or precast method. Because the performance of staircase which is used for evacuation can be largely different from connection types of precast concrete member, we tried to know structural behavior and performance evaluation according to each type of stair joints by experimental study. In the cast-in-place rigid joint, much reinforcement is needed in the end portion because much stress is concentrated in the middle portion. Also, in the pin joint which is used in the connection point, the maximum stress occurs in the middle point, so not only the amount of re-bar is increased but also the serviceability is largely decreased. The bolt type of semi-rigid joints proposed in this study had been increased strength and serviceability which is similar to the rigid joints. Also, its ductility was shown about 0.7 times in comparison to the rigid type and was about 2.8 times for the pin joint type. According to the classification of joint in Eurocode, it can be considered that it is one of the semi-rigid joints which are in the semi-rigid-full strength, and the structural behavior can be expected by using a model which applied to stiffness value decreased by 40 percent.

Aerodynamic Characteristics and Galloping Possibility of Ice Accreted Transmission Conductors by Wind Tunnel Tests (풍동실험을 통한 착빙 가공송전선의 공력 특성 측정 및 갤러핑 발생 분석)

  • Lee, Dooyoung;Goo, Jaeryang;Park, Sooman;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • In this paper, the wind tunnel test for the measurement of aerodynamic characteristics of transmission conductors with asymmetric sections is described. A single conductor model and bundled conductor models with ice accreted shapes are tested both in steady and turbulent flow, and the aerodynamic coefficients are acquired. Transmission conductor galloping is a kind of wind-induced vibration which is characterized by primarily vertical oscillation with a very low frequency and a high amplitude. It is well known that transmission conductor galloping is generally caused by moderately strong, steady winds when a transmission conductor has an asymmetric cross-section shaped by accreted ice. Galloping should be considered from the design stage of overhead lines because it can cause severe wear and fatigue damage to attachments as well as transmission conductors. It is reported that there have been normally 20 events of galloping per year in Korea, which may be followed by serious consequences in the electric power system. Therefore, this research is performed to measure aerodynamic characteristics of ice accreted transmission conductors to understand and control transmission conductor galloping so that it would help to prevent unexpected failures and reduce the maintenance costs caused by galloping.

A Study on the Development of Lightweight Seat Cushion Extension Module (경량형 시트 쿠션 익스텐션 모듈 개발에 관한 연구)

  • Jang, Hanseul;Choi, Seongkyu;Park, Sang-Chul;Lim, Heon-pil;Oh, Eu-Ddeum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.200-207
    • /
    • 2016
  • The automotive seat is an important component that moves in sync with the driver and is actively being developed with various new functions. The aim of this work is to develop a lightweight seat cushion extension module using a lightweight material. To this end, a structural strength analysis, vertical strength test, and durability test were conducted. In the structural analysis, the maximum value of deformation under vertical load was 4.98 mm at the front of the upper panel. The maximum stress was approximately 105 MPa, which occurred at the point of contact between the upper and lower panels of the module. The vertical strength test showed a maximum vertical deformation of 5.31 mm under a vertical load, which differed from the analysis results by approximately 6.45%. The structural safety of the product was verified by the fact that it showed no harmful deformation or damage during operation after the vertical strength test and a durability test for 20,000 cycles. Furthermore, the use of engineering plastics made it possible to reduce the weight by approximately 30% compared to existing products. The lack of damage after tests verified the passenger safety, strength, and rigidity of the product. The results are expected to be applied for improving environmental and fuel efficiency regulations and preventing accidents due to driver fatigue. The applications of this module could be expanded various types of vehicles, as well as other industries in which eco-friendly and lightweight materials are used.

Performance Evaluation of perpetual Asphalt Pavements Using an Accelerated Pavement Tester (포장가속시험기를 이용한 장수명 아스팔프포장의 공용성 평가 연구)

  • Song, Seo-Gyu;Lee, Jung-Hun;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.1-10
    • /
    • 2005
  • In this study, accelerated pavement tester(APT) was performed on long-life asphalt pavements that can save maintenance and user costs by increasing the design life twice longer than conventional asphalt pavements. Basic material testings are first conducted on a high modulus base(HMB) mixture developed in this study. Four different pavement sections including thin and thick conventional and thin and thick HMB courses are constructed to compare the load-carrying capacities and to investigate the fatigue and rutting performances using an accelerated pavement tester. Tensile strain values at the bottom of base courses under the various loading levels are measured. The tensile strain values of the HMB sections are lower than those of the conventional sections. It is observed from the APT performed on the thin pavement sections that no significant cracks are developed up to the 180,000 cycles of a wheel load. In terms of rutting, only 3mm of rutting is developed in the thick HMB section while 5.3mm of rutting is developed in the thick conventional section at the 90,000 cycles of the wheel load. The HMB material developed in this study can be successfully used in the long-life asphalt pavements because of its excellent fatigue and rutting performances. It is estimated from a series of structural analysis that the use of the HMB material instead of the conventional base materials may reduce the asphalt thickness at least 5cm because of its better load-carrying capacity.

  • PDF

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Seismic Response of Multiple Span Prestressed Concrete Girder Bridges in the New Madrid Seismic Zone (New Madrid 지진대의 다경간 PSC 교량의 지진거동)

  • Choi, Eun-Soo;Kim, Hak-Soo;Kim, Kwang-Il;Cho, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.11-23
    • /
    • 2006
  • This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.