• Title/Summary/Keyword: 하중 소음

Search Result 343, Processing Time 0.024 seconds

Dynamic Responses on Semi-Infinite Space Due to Transient Line Source in Orthotropic Media (선형하중에 의한 직교이방성 매체의 반구계에서 동적 응답 특성)

    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.974-980
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several orthotropic systems due to transient line source. These include infinite and semi-infinite spaces. The media possess orthotropic or higher symmetry. The lode is in the form of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for responses of infinite media due to a harmonic line source. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions thereby leading to the complete solutions. Explicit splutions for the displacements due to transient line loads are then obtaind by using Cargniard-DeHoop contour.

  • PDF

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Dynamic Analysis for Railway Bridge Considering Urban Maglev Train (도시형 자기부상열차 하중을 고려한 철도교량 동적해석)

  • Kim, Jung-Hun;Cha, Kyung-Ryul;Lee, Ung-Hee;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.481-484
    • /
    • 2011
  • 최근 철도는 미래의 핵심교통수단이자 저탄소 녹색성장을 대표하는 교통수단으로 주목받고 있다. 그 중 자기부상열차는 바퀴 마찰에 따른 소음 진동 분진이 없는 차세대 교통수단이며, 이를 지지하는 구조물(교량)은 열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 자기부상열차의 연행이동등분포하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계기준사항들을 만족해야한다. 도시형 자기부상철도 토목구조물 설계기준에 의하면 도시형 자기부상철도의 운행 안정성(동적거동)을 평가하기 위한 항목들로 대상 구조물의 고유진동수, 승차감을 고려한 연직처짐 등이 요구된다. 따라서, 본 연구에서는 자기부상열차의 실 열차하중을 고려하여 연행이동등분포하중으로 철도교량의 동적거동을 검토하였으며, 설계기준을 적용하여 대상 철도 교량의 운행 안정성을 평가하였다.

  • PDF

Stability Analysis of Beck's Column with a Tip Mass Restrained by a Spring (스프링으로 지지된 자유단에 집중질량을 갖는 Beck 기둥의 안정성 해석)

  • Li, Guangfan;Oh, Sang-Jin;Kim, Gwon-Sik;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1287-1294
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the Beck's columns with a tip spring, which carry a tip mass. The ordinary differential equation governing free vibrations of Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory Both the divergence and flutter critical loads are calculated from the load-frequency corves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the subtangential parameter, mass ratio and spring parameter.

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect (선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구)

  • Choi, Jihun;Seol, Hanshin;Park, Ilryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

Non-Cavitation Noise from Large Scale Marine Propeller (대형 선박용 프로펠러의 비공동소음 예측)

  • Ryu, Ki-Wahn;Kim, Bong-Ki;Yoo, Yong-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.562-567
    • /
    • 2012
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis are carried out by potential based panel method with time marching free wake approach. The distribution of hyrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat formula respectively. It turns out that the noise signal shows strong peak at the blade passage frequency. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

  • PDF