• Title/Summary/Keyword: 하중 비

Search Result 3,837, Processing Time 0.031 seconds

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

Bond Strength Evaluation of RC Beams on the Rib Shape of Reinforcing Bars (철근 마디 형상에 따른 RC 휨부재의 부착강도 평가)

  • Hong, Geon-Ho;Kim, Jin-Ah;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • The needs for high strength structural materials have recently increased, because construction and cost efficiencies are demanded by the costumers. But, the use of high strength reinforcing bars requires longer development and splice lengths compared to normal strength bars. This restriction may cause reduction in construction efficiency and require more complicated details. The purpose of this paper is to evaluate the bond strength on the rib shape of reinforcing bars to decrease development and splice lengths of high strength reinforcements. Total of 5 simple beam specimens were tested, and the main test variable was a rib shape of reinforcing bars. Test data was analyzed in the viewpoint of bond strength, load-deflection relationship, and crack pattern. Test results indicated that the bond strength of high relative rib area reinforcing bars increased up to 11% compared to normal strength reinforcements. And the improved rib shape reinforcements, which were formed with high and low height rib, increased the bond strength up to 23% even though the relative rib area was same as the high relative rib area reinforcements. Serviceability performances such as deflection number of cracking, and maximum crack width were similar in all specimens, so it is safe to conclude that the improved rib shape reinforcements can be applied to the structural members.

A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar and Advanced Reinforcing Detailings (고인성섬유 복합 모르타르 및 고성능 배근상세를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Hong, Kun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.233-240
    • /
    • 2013
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of high strength R/C interior beam-column joints regions using advanced reinforcing detailings and high ductile fiber-reinforced mortar. Five specimens of retrofitted the beam-column joint regions using advanced reinforcing detailings and high ductile fiber-reinforced mortar were constructed and tested for their retrofitring performances. Specimens designed by retrofitting the interior beam-column joint regions (IJIR series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity. Specimens of IJIR series, designed by the retrofitting of advanced reinforcing detailings and high ductile fiber-reinforced mortar in reinforecd beam-column joint regions increased its maximum load carrying capacity by 114.2~123.5% and its energy dissipation capacity by 1.55~1.85 times in comparison with the standard specimen of SIJC with a displacement ductility of 5.

Experimental Investigation of the Residual Stress on Fatigue Crack Growth of Welded Steel Members (용접(鎔接) 강부재(鋼部材)의 피로균열성장(疲勞龜裂成長)에 대한 잔류응력특성(殘留應力特性)에 관한 연구(硏究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Annealing were performed to investigate the behaviors of the residual stress remaining on the member of a steel structure. According to the fatigue test, the welding part has higher fatigue crack growth rate than the base metal part because the hardening of welding part reduce fracture toughness. However, the heat treatment decrease the hardness and increase the resistance to failure. Thus, the fatigue crack growth rate is improved and it reaches the minimum at $650^{\circ}C$. Elber' s equation includes the effect of the crack-close so that this equation provides a lower the fatigue crack growth rate than Paris-Erdogan' s equation, the Elber's curves show no significant difference to indentify the effect of the residual stress. The Pop loading along the crack length increases as the hardness goes higher. The heat treatment not only decrease the hardness, and the fatigue crack growth rate, but increase the absorption energy and fracture toughness on the member of a steel structure. As the result, the heat treatment produces the resistant ability to cracking which can reduce the degree of danger to failure.

  • PDF

A Study on the Structural Analysis with Geometry Design for Dome of a Composite Pressure Vessel (복합재 압력용기의 돔형상 설계에 따른 구조 해석)

  • Kim, Minsik;Bae, Joochan;Kim, Donggeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.825-831
    • /
    • 2017
  • In this study, we perform the design of dome geometry for the composite pressure vessel with applying the equation of Fulton and Vasiliev considering external load(thrusts). Variables of the dome geometry are opening radius ratio(${\rho}_0$) from 0.1 to 0.5 and thrust level from 40kN to 200kN. We conduct Finite Element Analysis(FEA) by using ABAQUS. As a result, the strain of the composite pressure vessel has shown strain gradient from inner to outer of dome surface. And the strain gradient may cause crack of resin inside the composite laminate. Strain gradient of Fulton dome is monotonously decreased as the ${\rho}_0$ increases, but the strain gradient of Vasiliev dome bas shown some different trend. when ${\rho}_0{\leq}0.1$, strain gradient of Fulton's is higher than Vasiliev's. But when 0.1<${\rho}_0$<0.35, strain gradient of Vasiliev's becomes higher than Fulton's. And in the case of $0.35{\leq}{\rho}_0$, strain gradient of Vasiliev's is higher than Fulton's. So the Vasiliev dome is more effective in ${\rho}_0{\leq}0.1$ condition and Fulton dome is more effective in $0.35{\leq}{\rho}_0$ condition. So, it's important for dome design to consider the crack of resin cause of the strain gradient.

  • PDF

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Characteristics of Building Structural System with IsoTruss® Grid (IsoTruss® 그리드를 적용한 건물구조시스템의 특성)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.737-742
    • /
    • 2017
  • Recently, unconventional high-rise building shapes have attracted attention as a landmark of metropolitan cities and the search for innovative building forms in architecture is ongoing. In this study, $Isotruss^{(R)}$ grid(ITG) used in smaller scale structures was applied to building structural systems and its structural performance was examined. The structural behavior of an ITG was compared with that of a diagrid structure as a reference structure. The stiffness-based design method of the diagrid system was used for the preliminary design stage of member sizing in an ITG. The structural design of 16, 32, and 48-story buildings was carried out for the two systems with the same size. The angle of the inclined columns for ITG and diagrid was $59^{\circ}$ and $68.2^{\circ}$, respectively. The lateral stiffness, steel tonnage of the exterior frame, axial strength ratio, story drift ratio, and natural frequency of the two systems were compared. Based on the analysis result of 6 buildings, the two systems had similar structural capacity; 93.3% and 88.7% of the lateral load was carried by the perimeter frame in the ITG system and diagrid system, respectively. This suggests that the ITG system is better in arranging core columns. Therefore, the proposed ITG system has not only a unique façade, but also substantial structural capacity equivalent to the existing system.

Seismic Performance Assessment of a Composite Modular System Considering Stiffness of Connections (접합부 강성을 고려한 합성 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • Modular system can be divided into two types based on the methods of resisting load. The one is the open-sided modular system composed of beams and columns. The other is the enclosed modular system composed of panels and studs. Of the Modular systems, the use of open-sided modular system is limited because it consists of closed member sections. In order to solve this problem, Choi et al.(2017) proposed a composite modular system with folded steel members filled with concrete. However, it was assumed in the previous study that the connections between modules are composed of rigid joint. Therefore it didn't identify the effect of connection behavior in structure. This study used finite element analysis to calculate stiffness of the connections in the proposed modular system. The linearization method presented in FEMA 440 is used for seismic performance assessment of structures, considering the connection stiffness computed in this study. The result of analysis shows that the capacity and story drift ratio obtained in the model considering stiffness of connection are less than those in the model not considering connection stiffness. Based on this observation, it is concluded that the stiffness of connection has a considerable effect on structural behavior.

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank with Tension Steel Cables (인장강선을 사용한 완전방호식 LNG 저장탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2008
  • This paper presents the stress and deformation behaviors of 9% nickel steel inner tank in a full containment LNG storage tank using a FE analysis. For an increased strength safety of an inner tank, the tension cable was fastened around the outside wall of an inner tank, which is known as a weak zone for the hydrostatic pressures, cryogenic temperature loads, and other loadings. Based on the FEM computed results between a conventional inner tank and a inner tank with tension cables around the lower part of the side wall of an inner tank, the redesigned inner tank is more safe than that of the conventional tank without a tension cable. The FEM results recommend $3{\sim}4$ steel tension cables with a diameter of 50mm for an increased strength safety of the inner tank, which may decrease the stress concentration and deformation near the lower part of the side wall. Thus the tension cable around the inner tank may be used as an alternative safety device compared to the stiffener and the top girder structures for the increased LNG storage tank, especially.

  • PDF